清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Harnessing omics data for drug discovery and development in ovarian aging

表观遗传学 组学 现象 代谢组 代谢组学 表观基因组 蛋白质组学 计算生物学 转录组 生物 基因组学 表观遗传学 生物信息学 DNA甲基化 基因组 遗传学 基因表达 基因
作者
Fengyu Zhang,Ming Zhu,Yi Chen,Guiquan Wang,Haiyan Yang,Xinmei Lu,Yan Li,Hsun‐Ming Chang,Yang Wu,Yunlong Ma,Shuai Yuan,Wencheng Zhu,Xi Dong,Yue Zhao,Yang Yu,Jia Wang,Liangshan Mu
出处
期刊:Human Reproduction Update [Oxford University Press]
标识
DOI:10.1093/humupd/dmaf002
摘要

Ovarian aging occurs earlier than the aging of many other organs and has a lasting impact on women's overall health and well-being. However, effective interventions to slow ovarian aging remain limited, primarily due to an incomplete understanding of the underlying molecular mechanisms and drug targets. Recent advances in omics data resources, combined with innovative computational tools, are offering deeper insight into the molecular complexities of ovarian aging, paving the way for new opportunities in drug discovery and development. This review aims to synthesize the expanding multi-omics data, spanning genome, transcriptome, proteome, metabolome, and microbiome, related to ovarian aging, from both tissue-level and single-cell perspectives. We will specially explore how the analysis of these emerging omics datasets can be leveraged to identify novel drug targets and guide therapeutic strategies for slowing and reversing ovarian aging. We conducted a comprehensive literature search in the PubMed database using a range of relevant keywords: ovarian aging, age at natural menopause, premature ovarian insufficiency (POI), diminished ovarian reserve (DOR), genomics, transcriptomics, epigenomics, DNA methylation, RNA modification, histone modification, proteomics, metabolomics, lipidomics, microbiome, single-cell, genome-wide association studies (GWAS), whole-exome sequencing, phenome-wide association studies (PheWAS), Mendelian randomization (MR), epigenetic target, drug target, machine learning, artificial intelligence (AI), deep learning, and multi-omics. The search was restricted to English-language articles published up to September 2024. Multi-omics studies have uncovered key mechanisms driving ovarian aging, including DNA damage and repair deficiencies, inflammatory and immune responses, mitochondrial dysfunction, and cell death. By integrating multi-omics data, researchers can identify critical regulatory factors and mechanisms across various biological levels, leading to the discovery of potential drug targets. Notable examples include genetic targets such as BRCA2 and TERT, epigenetic targets like Tet and FTO, metabolic targets such as sirtuins and CD38+, protein targets like BIN2 and PDGF-BB, and transcription factors such as FOXP1. The advent of cutting-edge omics technologies, especially single-cell technologies and spatial transcriptomics, has provided valuable insights for guiding treatment decisions and has become a powerful tool in drug discovery aimed at mitigating or reversing ovarian aging. As technology advances, the integration of single-cell multi-omics data with AI models holds the potential to more accurately predict candidate drug targets. This convergence offers promising new avenues for personalized medicine and precision therapies, paving the way for tailored interventions in ovarian aging. Not applicable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
feimengxia完成签到 ,获得积分10
8秒前
JrPaleo101完成签到,获得积分10
44秒前
大树完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
WSY完成签到 ,获得积分10
2分钟前
共享精神应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
文学痞发布了新的文献求助10
4分钟前
文学痞完成签到,获得积分10
4分钟前
4分钟前
SL发布了新的文献求助10
4分钟前
Ji完成签到,获得积分10
4分钟前
健康的大船完成签到 ,获得积分10
5分钟前
SL完成签到,获得积分10
5分钟前
bubble完成签到 ,获得积分10
6分钟前
Young完成签到 ,获得积分10
6分钟前
liguanyu1078完成签到,获得积分10
6分钟前
6分钟前
情怀应助科研通管家采纳,获得10
7分钟前
春风沂水完成签到,获得积分10
8分钟前
zzxx完成签到,获得积分10
8分钟前
科研通AI5应助春风沂水采纳,获得10
8分钟前
林梓完成签到 ,获得积分10
8分钟前
华仔应助科研通管家采纳,获得10
9分钟前
高高的从波完成签到,获得积分10
10分钟前
10分钟前
Hygge发布了新的文献求助10
11分钟前
zyjsunye完成签到 ,获得积分0
11分钟前
lyx2010完成签到,获得积分10
11分钟前
稻子完成签到 ,获得积分10
11分钟前
田様应助科研通管家采纳,获得10
11分钟前
在水一方应助科研通管家采纳,获得10
11分钟前
JSEILWQ完成签到 ,获得积分10
12分钟前
12分钟前
Hello应助天空之城采纳,获得10
13分钟前
13分钟前
天空之城发布了新的文献求助10
13分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777624
求助须知:如何正确求助?哪些是违规求助? 3323001
关于积分的说明 10212874
捐赠科研通 3038350
什么是DOI,文献DOI怎么找? 1667372
邀请新用户注册赠送积分活动 798109
科研通“疑难数据库(出版商)”最低求助积分说明 758230