清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Harnessing omics data for drug discovery and development in ovarian aging

表观遗传学 组学 现象 代谢组 代谢组学 表观基因组 蛋白质组学 计算生物学 转录组 生物 基因组学 表观遗传学 生物信息学 DNA甲基化 基因组 遗传学 基因 基因表达
作者
Fengyu Zhang,Ming Zhu,Yi Chen,Guiquan Wang,Haiyan Yang,Xinmei Lu,Yan Li,Hsun‐Ming Chang,Yang Wu,Yunlong Ma,Shuai Yuan,Wencheng Zhu,Xi Dong,Yue Zhao,Yang Yu,Jia Wang,Liangshan Mu
出处
期刊:Human Reproduction Update [Oxford University Press]
卷期号:31 (3): 240-268 被引量:9
标识
DOI:10.1093/humupd/dmaf002
摘要

Abstract BACKGROUND Ovarian aging occurs earlier than the aging of many other organs and has a lasting impact on women’s overall health and well-being. However, effective interventions to slow ovarian aging remain limited, primarily due to an incomplete understanding of the underlying molecular mechanisms and drug targets. Recent advances in omics data resources, combined with innovative computational tools, are offering deeper insight into the molecular complexities of ovarian aging, paving the way for new opportunities in drug discovery and development. OBJECTIVE AND RATIONALE This review aims to synthesize the expanding multi-omics data, spanning genome, transcriptome, proteome, metabolome, and microbiome, related to ovarian aging, from both tissue-level and single-cell perspectives. We will specially explore how the analysis of these emerging omics datasets can be leveraged to identify novel drug targets and guide therapeutic strategies for slowing and reversing ovarian aging. SEARCH METHODS We conducted a comprehensive literature search in the PubMed database using a range of relevant keywords: ovarian aging, age at natural menopause, premature ovarian insufficiency (POI), diminished ovarian reserve (DOR), genomics, transcriptomics, epigenomics, DNA methylation, RNA modification, histone modification, proteomics, metabolomics, lipidomics, microbiome, single-cell, genome-wide association studies (GWAS), whole-exome sequencing, phenome-wide association studies (PheWAS), Mendelian randomization (MR), epigenetic target, drug target, machine learning, artificial intelligence (AI), deep learning, and multi-omics. The search was restricted to English-language articles published up to September 2024. OUTCOMES Multi-omics studies have uncovered key mechanisms driving ovarian aging, including DNA damage and repair deficiencies, inflammatory and immune responses, mitochondrial dysfunction, and cell death. By integrating multi-omics data, researchers can identify critical regulatory factors and mechanisms across various biological levels, leading to the discovery of potential drug targets. Notable examples include genetic targets such as BRCA2 and TERT, epigenetic targets like Tet and FTO, metabolic targets such as sirtuins and CD38+, protein targets like BIN2 and PDGF-BB, and transcription factors such as FOXP1. WIDER IMPLICATIONS The advent of cutting-edge omics technologies, especially single-cell technologies and spatial transcriptomics, has provided valuable insights for guiding treatment decisions and has become a powerful tool in drug discovery aimed at mitigating or reversing ovarian aging. As technology advances, the integration of single-cell multi-omics data with AI models holds the potential to more accurately predict candidate drug targets. This convergence offers promising new avenues for personalized medicine and precision therapies, paving the way for tailored interventions in ovarian aging. REGISTRATION NUMBER Not applicable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助小饶采纳,获得100
14秒前
lily完成签到 ,获得积分10
33秒前
HUO完成签到 ,获得积分10
35秒前
科研通AI2S应助科研通管家采纳,获得30
39秒前
在水一方应助科研通管家采纳,获得10
39秒前
47秒前
50秒前
美满惜寒完成签到,获得积分10
1分钟前
阳光完成签到,获得积分10
1分钟前
runtang完成签到,获得积分10
1分钟前
呵呵哒完成签到,获得积分10
1分钟前
洋芋饭饭完成签到,获得积分10
1分钟前
清水完成签到,获得积分10
1分钟前
prrrratt完成签到,获得积分10
1分钟前
啪嗒大白球完成签到,获得积分10
1分钟前
guoyufan完成签到,获得积分10
1分钟前
675完成签到,获得积分10
1分钟前
zwzw完成签到,获得积分10
1分钟前
CGBIO完成签到,获得积分10
1分钟前
喜喜完成签到,获得积分10
1分钟前
张浩林完成签到,获得积分10
1分钟前
ys1008完成签到,获得积分10
1分钟前
王jyk完成签到,获得积分10
1分钟前
yzz完成签到,获得积分10
1分钟前
qq完成签到,获得积分10
1分钟前
真的OK完成签到,获得积分0
1分钟前
Temperature完成签到,获得积分10
1分钟前
cityhunter7777完成签到,获得积分10
1分钟前
朝夕之晖完成签到,获得积分10
1分钟前
Syan完成签到,获得积分10
1分钟前
BowieHuang完成签到,获得积分0
1分钟前
BMG完成签到,获得积分10
1分钟前
寒冷的月亮完成签到 ,获得积分10
1分钟前
噗愣噗愣地刚发芽完成签到 ,获得积分10
1分钟前
1分钟前
gyx完成签到 ,获得积分10
2分钟前
Garfield完成签到 ,获得积分10
2分钟前
哗啦地一声完成签到,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603408
求助须知:如何正确求助?哪些是违规求助? 4688424
关于积分的说明 14853615
捐赠科研通 4691247
什么是DOI,文献DOI怎么找? 2540700
邀请新用户注册赠送积分活动 1507015
关于科研通互助平台的介绍 1471678