亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ecology needs a causal overhaul

因果推理 因果关系 生态学 推论 因果关系(物理学) 观察研究 因果模型 阿卡克信息准则 统计推断 科学哲学 认识论 计算机科学 数据科学 心理学 人工智能 计量经济学 机器学习 数学 统计 生物 哲学 物理 量子力学
作者
Daniel W. Franks,Graeme D. Ruxton,Tom N. Sherratt
出处
期刊:Biological Reviews [Wiley]
标识
DOI:10.1111/brv.70029
摘要

ABSTRACT Ecology has yet to embrace causal inference, yet most questions in ecology are causal. Despite the common use of terms that imply causation, such as “shapes”, “drives”, or “impacts”, many studies shy away from directly acknowledging their causal ambitions. This avoidance not only obscures the true intent of research but also underpins a broader challenge within the field's approach to science. Ecology relies heavily on observational data, and so the necessity for robust causal inference becomes paramount. However, causal methods are also needed for non‐randomised experiments. We critique the predominance in ecology of scientifically empty statistical procedures that lack scientific clarity and value. We advocate for a shift towards explicit causal inference, arguing that understanding causality is not confined to randomised controlled trials but can also be enriched through observational data when paired with rigorous causal inference methodologies. This paper elucidates the common pitfalls in ecological studies, such as throwing all variables into an analysis, use of the Akaike information criterion (AIC) for model selection, the “Table 2 fallacy” and the misuse of controls: all of which can lead to misleading scientific understanding. The good news is that causal inference is not primarily a statistical problem, but rather a scientific one that is accessible to all ecologists. We can achieve reasonable progress by continuing to use the standard statistical toolbox based around regression models, familiar to many ecologists, paired with causal diagrams. For regression, causal inference is about understanding what we should condition on (good controls) and what we should not condition on (bad controls). We provide not only a critique but a constructive guide, aiming to demystify causal inference and encourage its adoption in ecological studies using familiar approaches. By doing so, we seek to elevate the quality and impact of ecological research, moving beyond routine convenient statistical procedures and towards a more scientifically sound and insightful understanding of ecology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1073980795发布了新的文献求助10
2秒前
科研通AI5应助1073980795采纳,获得10
14秒前
14秒前
小飞在学习呢完成签到,获得积分10
15秒前
18秒前
爱静静应助无亞采纳,获得10
18秒前
19秒前
cyanpomelo完成签到,获得积分10
20秒前
复杂的方盒完成签到 ,获得积分10
22秒前
干羞花完成签到,获得积分10
27秒前
Augustines完成签到,获得积分10
29秒前
Z17完成签到 ,获得积分10
31秒前
冷漠无情文献搬运工完成签到,获得积分10
34秒前
ZJR发布了新的文献求助10
35秒前
fdwang完成签到 ,获得积分10
50秒前
1分钟前
学术通zzz完成签到,获得积分10
1分钟前
1分钟前
windows完成签到,获得积分10
1分钟前
faye完成签到,获得积分10
1分钟前
1分钟前
余念安完成签到 ,获得积分10
1分钟前
wanci应助Haw采纳,获得100
1分钟前
1337发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Evan发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
糟糕的道罡完成签到,获得积分10
1分钟前
1分钟前
颢懿完成签到 ,获得积分10
1分钟前
挖掘机完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
科研通AI5应助浮生若梦采纳,获得10
2分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827212
求助须知:如何正确求助?哪些是违规求助? 3369556
关于积分的说明 10456454
捐赠科研通 3089256
什么是DOI,文献DOI怎么找? 1699738
邀请新用户注册赠送积分活动 817497
科研通“疑难数据库(出版商)”最低求助积分说明 770251