Ultra-sensitive detection of hepatocellular carcinoma (HCC) with methylation signal enrichment of ctDNA and hepatitis B virus (HBV).

肝细胞癌 医学 乙型肝炎病毒 病毒学 甲基化 病毒 癌症研究 乙型肝炎 丙型肝炎病毒 DNA 生物 遗传学
作者
Nan Lin,Yaxu Wang,Qujin Li,Xiaosheng He,Nina Guanyi Xie,Yangjunyi Li,Liyuan Zhao,Zhihui Xu,Lei Song,Yujie Chen,Zhu Chen,Zhijun Zhao,Chunyan Xue,Feng Xu,Yongfeng Yang,Yonghui Li,Xueguang Sun,Baoliang Zhu,Xiaohui Wu,Xiaobo Wang
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:43 (16_suppl): 4136-4136
标识
DOI:10.1200/jco.2025.43.16_suppl.4136
摘要

4136 Background: Aberrant methylation patterns in cell-free DNA (cfDNA) have been identified as effective biomarkers for HCC early detection, with circulating tumor DNA (ctDNA) from HCC patients exhibiting distinct methylation signatures. Additionally, HBV infection and the associated methylation alterations are closely linked to the development and progression of both cirrhosis and HCC. In this study, we utilize an ultra-sensitive Methylation Anchor Probe for Low Signal Enrichment (MAPLE) to enrich HCC-related methylation signals in ctDNA, as well as those from HBV genomes. By integrating these signals with a machine learning model, we achieve improved discrimination between HCC patients and non-cancer controls, while reducing false positives in individuals with cirrhosis. Methods: Whole blood samples were collected from 246 participants, including 96 HCC patients, 123 healthy controls, and 27 cirrhosis individuals. cfDNA was extracted from plasma, followed by enzymatic conversion and library preparation. Targeted hybrid capture was performed using a custom-designed panel that enriched methylation signals associated with HCC and HBV CpG islands. The final libraries were sequenced using next-generation sequencing (NGS). A machine learning model was developed, incorporating methylation features derived from both the human genomic regions and HBV CpG islands. Participants were randomly divided into training and test sets at a 3:1 ratio, with the training set undergoing 5-fold cross-validation for model optimization. To assess model robustness, 40 resampling iterations were conducted to evaluate performance in distinguishing HCC patients across various stages from non-cancer individuals. Results: Among all participants, 39.8% tested positive for HBV. Incorporating methylation features from the HBV genome into the model improved sensitivity for detecting early-stage HCC in HBV-positive individuals and enhanced accuracy in distinguishing early-stage HCC from cirrhosis. Analysis of selected HBV methylation features revealed hypermethylation in HCC patients compared to individuals with cirrhosis and healthy controls. The final machine learning model achieved a specificity of 97.6% (96.2%–97.9%). Sensitivities for detecting HCC across all stages were: I: 76.4% (73.5%–79.4%), II: 94.6% (92.0%–97.3%), III: 99.5% (98.8%–100.0%), and IV: 100.0% (100.0%–100.0%). For distinguishing cirrhosis, the model demonstrated a specificity of 81.9% (77.6%–86.3%). Conclusions: Using the ultra-sensitive MAPLE technique, we developed a novel panel that enriches methylation signals from both the human and HBV genomes. This assay significantly improved sensitivity for detecting early-stage HCC. By incorporating HBV genome features, we further enhanced the accuracy of distinguishing early-stage HCC from cirrhosis in HBV-positive individuals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Frank应助shbkmy采纳,获得10
1秒前
Yuang发布了新的文献求助10
1秒前
yian007完成签到,获得积分10
1秒前
雪梅完成签到 ,获得积分10
1秒前
jideli发布了新的文献求助10
1秒前
酷波er应助陈林采纳,获得10
2秒前
2秒前
Fairy完成签到,获得积分20
2秒前
寒江雪完成签到,获得积分10
3秒前
婷婷发布了新的文献求助10
3秒前
Hello应助拉长的念露采纳,获得10
3秒前
lys完成签到,获得积分10
3秒前
严俊麟发布了新的文献求助10
4秒前
4秒前
项听蓉发布了新的文献求助10
4秒前
4秒前
aneao完成签到,获得积分10
4秒前
4秒前
5秒前
研友_VZG7GZ应助zjjjjjjjjj采纳,获得10
5秒前
感谢大哥的帮助完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
我爱乒乓球完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
一碗鱼发布了新的文献求助10
7秒前
7秒前
ich发布了新的文献求助30
7秒前
随心完成签到,获得积分20
9秒前
9秒前
9秒前
嘒彼星完成签到,获得积分10
9秒前
迷你的白开水完成签到,获得积分10
9秒前
NoMi完成签到,获得积分10
10秒前
June完成签到,获得积分10
10秒前
泡泡完成签到 ,获得积分10
11秒前
sniper完成签到 ,获得积分10
11秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5446669
求助须知:如何正确求助?哪些是违规求助? 4555704
关于积分的说明 14253026
捐赠科研通 4478151
什么是DOI,文献DOI怎么找? 2453498
邀请新用户注册赠送积分活动 1444335
关于科研通互助平台的介绍 1420370