生物
小胶质细胞
Profilin公司
DNA损伤
细胞生物学
DNA
微生物学
免疫学
遗传学
炎症
细胞骨架
细胞
肌动蛋白细胞骨架
作者
Chan Rim,Soyoung Sung,Hui‐Ju Kim,Seung Hyun Kim,Minyeop Nahm,Min‐Soo Kwon
出处
期刊:Glia
[Wiley]
日期:2025-05-03
摘要
ABSTRACT Accumulation of DNA damage is a hallmark of cellular senescence and plays a critical role in brain aging. Although the DNA damage repair mechanisms are crucial in cellular senescence, they are not well understood in microglia. In this study, we found that profilin‐1 (PFN1), an actin‐binding protein, relocates from the cytoplasm to the nucleus in response to DNA double‐strand breaks (DSBs) induced by doxorubicin. This nuclear PFN1 subsequently translocates back to the cytoplasm during the recovery period. In response to DSBs, we detected enhanced expression of genes associated with nonhomologous end joining (NHEJ), but not with homologous recombination (HR), along with increased nuclear F‐actin accumulation. However, this repair process is compromised when PFN1 is either knocked down or its nuclear transport is blocked. Notably, in DNA damage‐induced senescent microglia, increased nuclear localization of PFN1 and nuclear F‐actin formation are associated with phagocytic dysfunction. Both ex vivo aged microglia and publicly available single‐cell RNA sequencing data from aged mouse brains recapitulate the in vitro findings described above. Despite cytochalasin D treatment for actin depolymerization, the return of PFN1 to the cytoplasm was not facilitated due to its aggregation. We propose that PFN1 plays an important role in DNA damage repair in microglia. In addition, the dysregulation of the nucleocytoplasmic balance of PFN1 alongside DNA damage accumulation may contribute to the phagocytic impairment of microglia in the aged brain.
科研通智能强力驱动
Strongly Powered by AbleSci AI