Decatungstate‐Driven Photocatalytic Pathways for Sustainable and Cleaner Recovery of Precious Metals

催化作用 光催化 资源回收 溶解 材料科学 密度泛函理论 电解质 环境污染 铂金 化学工程 纳米技术 化学 环境科学 电极 废水 环境工程 计算化学 有机化学 物理化学 工程类 环境保护
作者
Ya Xie,Ting Zhang,Hongxi Guo,Zhaoyi Ding,Shuyuan Dong,Yao Chen,Junhui Zhang,Shuhui Guan,Zhenmin Xu,Yu Han,Zhenfeng Bian
出处
期刊:Angewandte Chemie [Wiley]
被引量:4
标识
DOI:10.1002/anie.202505651
摘要

The recovery of precious metals from waste streams is crucial for sustainable resource utilization but remains hindered by traditional methods involving high toxicity, energy consumption, and environmental pollution. Here, we present a photocatalytic strategy employing hydrothermally synthesized decatungstate ([W10O32]4‐) homogeneous ion catalysts to achieve simultaneous oxidation and reduction of precious metals under ambient conditions. This innovative approach integrates solvent‐controlled reaction pathways, enabling efficient dissolution and recovery of precious metals from diverse waste sources, including electronic waste (e‐waste), platinum membrane electrodes, and platinum‐containing catalysts. The decatungstate catalyst exhibits exceptional performance, with an apparent quantum yield of 0.027%—nearly double that of commercial TiO2 (0.014%)—and achieves recovery efficiency of 80–100% for platinum, surpassing 21 tested photocatalysts. The process adheres to a solid‐phase dissolution model and remains against ionic interference. Time‐dependent density functional theory (TD‐DFT) calculations corroborate experimental UV‐Vis spectra, while electron‐hole pair analyses elucidate atomic and molecular contributions to photocatalytic activity. Density functional theory (DFT) further validates the thermodynamic feasibility of the reaction pathways. By combining high efficiency, ambient operational conditions, and scalability, this work establishes decatungstates as a sustainable benchmark for green precious metal recovery, addressing the limitations of traditional methods and advancing innovation in resource circularity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
peaceone完成签到,获得积分10
刚刚
1秒前
小蘑菇应助欣慰妙海采纳,获得10
1秒前
sypbrooks完成签到,获得积分10
1秒前
传奇3应助dou采纳,获得10
2秒前
haierke发布了新的文献求助10
2秒前
科研通AI6应助MetaMysteria采纳,获得10
2秒前
3秒前
3秒前
5秒前
逆天小子发布了新的文献求助10
6秒前
puppy完成签到,获得积分10
6秒前
冷傲的如柏完成签到,获得积分10
7秒前
Ava应助机智冬灵采纳,获得10
7秒前
weiyi完成签到,获得积分20
7秒前
尘晨完成签到,获得积分20
7秒前
无花果应助Alvin采纳,获得10
7秒前
Emma发布了新的文献求助20
8秒前
小机灵鬼发布了新的文献求助10
8秒前
axiba发布了新的文献求助10
8秒前
小猪快跑发布了新的文献求助10
8秒前
9秒前
sfx完成签到,获得积分10
9秒前
小蘑菇应助是玥玥啊采纳,获得10
10秒前
Lucas应助含糊的宛秋采纳,获得10
11秒前
11秒前
11秒前
康兴宇发布了新的文献求助10
11秒前
情怀应助suini123采纳,获得10
11秒前
长期的爽世完成签到 ,获得积分10
12秒前
尘_完成签到,获得积分10
12秒前
13秒前
Akim应助方源采纳,获得10
13秒前
14秒前
苹果一斩发布了新的文献求助10
14秒前
Stefanie发布了新的文献求助10
14秒前
谦让的沛芹完成签到,获得积分10
14秒前
16秒前
lin完成签到,获得积分10
16秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5154152
求助须知:如何正确求助?哪些是违规求助? 4349747
关于积分的说明 13543133
捐赠科研通 4192593
什么是DOI,文献DOI怎么找? 2299500
邀请新用户注册赠送积分活动 1299439
关于科研通互助平台的介绍 1244483