Decoding the Plastic Patch: Exploring the Global Microplastic Distribution in the Surface Layers of Marine Regions with Interpretable Machine Learning

解码方法 分布(数学) 曲面(拓扑) 计算机科学 环境科学 法律工程学 地质学 工程类 电信 数学 几何学 数学分析
作者
Linjie Zhang,Wenyue Wang,Feng Wang,Dong Wu,Yinglong Su,Min Zhan,Kaiyi Li,Huahong Shi,Bing Xie
出处
期刊:Environmental Science & Technology [American Chemical Society]
标识
DOI:10.1021/acs.est.4c12227
摘要

The marine environment is grappling with microplastic (MP) pollution, necessitating an understanding of its distribution patterns, influencing factors, and potential ecological risks. However, the vast area of the ocean and budgetary constraints make conducting comprehensive surveys to assess MP pollution impractical. Interpretable machine learning (ML) offers an effective solution. Herein, we used four ML algorithms based on MP data calibrated to the size range of 20-5000 μm and considered various factors to construct a robust predictive ML model of marine MP distribution. Interpretation of the ML model indicated that biogeochemical and anthropogenic factors substantially influence global marine MP pollution, while atmospheric and physical factors exert lesser effects. However, the extent of the influence of each factor may vary within specific marine regions and their underlying mechanisms may differ across regions. The predicted results indicated that the global marine MP concentrations ranged from 0.176 to 27.055 particles/m3 and that MPs in the 20-5000-μm size range did not pose a potential ecological risk. The interpretable ML framework developed in this study covered MP data preprocessing, MP distribution prediction, and interpretation of the influencing factors of MPs, providing an essential reference for marine MP pollution management and decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
怡然可乐发布了新的文献求助10
2秒前
猪猪完成签到 ,获得积分10
2秒前
3秒前
小白发布了新的文献求助10
3秒前
快乐小海带完成签到,获得积分10
4秒前
4秒前
香蕉觅云应助Serena采纳,获得10
5秒前
5秒前
7秒前
sss发布了新的文献求助10
8秒前
lyp完成签到,获得积分10
8秒前
心心发布了新的文献求助10
8秒前
Yolo发布了新的文献求助10
9秒前
吉克完成签到,获得积分10
9秒前
9秒前
温冰雪完成签到,获得积分10
10秒前
brisk应助啦啦啦采纳,获得10
11秒前
ssy发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
14秒前
14秒前
羊_应助科研通管家采纳,获得10
14秒前
打打应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
ding应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
lune应助科研通管家采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
pharmstudent发布了新的文献求助30
15秒前
文艺子默发布了新的文献求助30
15秒前
18秒前
18秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Capitalism and Its Critics: A History: From the Industrial Revolution to AI 200
The Triumph of Economic Freedom: Debunking the Seven Myths of American Capitalism 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3832910
求助须知:如何正确求助?哪些是违规求助? 3375329
关于积分的说明 10488651
捐赠科研通 3094953
什么是DOI,文献DOI怎么找? 1704149
邀请新用户注册赠送积分活动 819805
科研通“疑难数据库(出版商)”最低求助积分说明 771639