Current Role of Artificial Intelligence in the Management of Esophageal Cancer

医学 食管癌 人工智能 模式 梅德林 生活质量(医疗保健) 无线电技术 食管腺癌 临床试验 随机对照试验 癌症 重症监护医学 腺癌 外科 病理 内科学 放射科 计算机科学 护理部 法学 政治学 社会学 社会科学
作者
Evgenia Mela,Dimitrios Tsapralis,Dimitrios Papakonstantinou,Panagiotis Sakarellos,Chrysovalantis Vergadis,Michail E. Klontzas,Ioannis Rouvelas,Antonios Tzortzakakis,Dimitriοs Schizas
出处
期刊:Journal of Clinical Medicine [MDPI AG]
卷期号:14 (6): 1845-1845 被引量:3
标识
DOI:10.3390/jcm14061845
摘要

Background/Objectives: Esophageal cancer (EC) represents a major global contributor to cancer-related mortality. The advent of artificial intelligence (AI), including machine learning, deep learning, and radiomics, holds promise for enhancing treatment decisions and predicting outcomes. The aim of this review is to present an overview of the current landscape and future perspectives of AI in the management of EC. Methods: A literature search was performed on MEDLINE using the following keywords: “Artificial Intelligence”, “Esophageal cancer”, “Barrett’s esophagus”, “Esophageal Adenocarcinoma”, and “Esophageal Squamous cell carcinoma”. All titles and abstracts were screened; the results included 41 studies. Results: Over the past five years, the number of studies focusing on the application of AI to the treatment and prognosis of EC has surged, leveraging increasingly larger datasets with external validation. The simultaneous incorporation in AI models of clinical factors and features from several imaging modalities displays improved predictive performance, which may enhance patient outcomes, based on direct personalized therapeutic options. However, clinicians and researchers must address existing limitations, conduct randomized controlled trials, and consider the ethical and legal aspects that arise to establish AI as a standard decision-support tool. Conclusions: AI applications may result in substantial advances in EC management, heralding a new era. Considering the complexity of EC as a clinical entity, the evolving potential of AI is anticipated to ameliorate patients’ quality of life and survival rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
湫殇发布了新的文献求助10
刚刚
1秒前
星星发布了新的文献求助10
1秒前
微笑的又亦完成签到,获得积分10
1秒前
爆米花应助李小宁采纳,获得10
2秒前
开口笑的大菠萝完成签到,获得积分20
2秒前
浮游应助平常破茧采纳,获得10
3秒前
3秒前
玩命做研究完成签到 ,获得积分10
3秒前
抄手完成签到,获得积分10
3秒前
科目三应助文献狂人采纳,获得10
4秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
Amanda发布了新的文献求助20
5秒前
asdfghjklhz发布了新的文献求助10
6秒前
打打应助大意的飞莲采纳,获得10
6秒前
脑洞疼应助大意的飞莲采纳,获得10
6秒前
6秒前
天天快乐应助大意的飞莲采纳,获得10
6秒前
斯文败类应助大意的飞莲采纳,获得10
6秒前
ziyiziyi完成签到,获得积分20
6秒前
7秒前
7秒前
7秒前
7秒前
的方法完成签到,获得积分10
7秒前
JIAFU完成签到 ,获得积分10
8秒前
顾矜应助荔枝采纳,获得50
8秒前
刘嘉欣完成签到,获得积分10
9秒前
9秒前
xiangdannuli发布了新的文献求助10
9秒前
科研通AI6应助孙朱珠采纳,获得10
9秒前
Koma完成签到,获得积分10
10秒前
ting完成签到,获得积分20
10秒前
10秒前
今后应助yu采纳,获得10
10秒前
11秒前
11秒前
李舂艳发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552469
求助须知:如何正确求助?哪些是违规求助? 4637218
关于积分的说明 14648146
捐赠科研通 4579088
什么是DOI,文献DOI怎么找? 2511302
邀请新用户注册赠送积分活动 1486474
关于科研通互助平台的介绍 1457556