The Classification and Recognition of Wrestling Injury Based on Deep Learning

人工智能 深度学习 计算机科学 模式识别(心理学) 物理医学与康复 医学
作者
Yanhui Zhang
出处
期刊:Journal of Mechanics in Medicine and Biology [World Scientific]
标识
DOI:10.1142/s0219519425400433
摘要

This study proposes a deep learning (DL)-based multi-class injury classification and recognition model to improve the efficiency and accuracy of injury diagnosis in wrestling. It also optimizes the design by combining Convolutional Neural Networks (CNNs), residual networks, and dense connection networks. Since the existing diagnostic methods rely on manual experience and the classification is not fine enough, this study designs a model framework to automatically classify fractures, sprains, strains, and other common wrestling injuries. The main problems include improving the model’s classification accuracy, enhancing the reasoning efficiency, optimizing the computational complexity, and solving data imbalance and poor classification of small sample categories. By comparing advanced models such as EfficientNet, Vision Transformer (ViT), and Swin Transformer, this study comprehensively evaluates the model performance in many dimensions. It encompasses classification accuracy, specificity, Area Under the Receiver Operating Characteristic Curve (AUC-ROC), and average cross-entropy loss. Regarding classification accuracy, the proposed optimized model’s performance in competition, training, and accidental injuries is 0.907, 0.930, and 0.890, respectively, higher than most comparative models. In terms of specificity and AUC-ROC, the proposed model’s AUC-ROC value in training injury reaches 0.958, showing excellent classification performance. In addition, the average cross-entropy loss is as low as 0.242 in competition injury, showing that the model can maintain a low classification error under multiple injury types. Therefore, this study has made an important contribution to injury classification and recognition technology based on DL in the sports medicine field. Especially, in improving classification efficiency and accuracy, it provides reference and support for applying intelligent medical technology in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
祁问儿发布了新的文献求助10
刚刚
一帆风顺发布了新的文献求助10
刚刚
林梓峰完成签到,获得积分10
1秒前
唱跳rap完成签到,获得积分10
1秒前
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
残幻应助科研通管家采纳,获得10
3秒前
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
图图应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
科研助手6应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
研友_xLOMQZ完成签到,获得积分0
4秒前
4秒前
TTing发布了新的文献求助10
4秒前
4秒前
冷傲汽车完成签到,获得积分10
5秒前
鹅毛大雪发布了新的文献求助10
5秒前
十八完成签到 ,获得积分10
5秒前
6秒前
jibenkun发布了新的文献求助10
7秒前
NexusExplorer应助哈哈哈采纳,获得10
7秒前
vion发布了新的文献求助10
7秒前
7秒前
传奇3应助东东采纳,获得10
8秒前
皮皮发布了新的文献求助10
8秒前
踏实三问完成签到,获得积分10
9秒前
李健应助Mark采纳,获得10
9秒前
顺利的飞槐完成签到 ,获得积分10
9秒前
是龙龙呀发布了新的文献求助10
10秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838293
求助须知:如何正确求助?哪些是违规求助? 3380617
关于积分的说明 10515159
捐赠科研通 3100208
什么是DOI,文献DOI怎么找? 1707388
邀请新用户注册赠送积分活动 821709
科研通“疑难数据库(出版商)”最低求助积分说明 772890