清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Exploring the Use of AI in Qualitative Data Analysis: Comparing Manual Processing with Avidnote for Theme Generation

主题(计算) 计算机科学 数据科学 万维网
作者
S. M. Akramul Kabir,Fareeha Ali,Rana Lotfy Ahmed,Ruqayya Sulaiman-Hill
出处
期刊:International journal of qualitative methods [SAGE Publishing]
卷期号:24
标识
DOI:10.1177/16094069251336810
摘要

This paper examines the potential benefits and limitations of using Artificial Intelligence (AI) technology in qualitative research. Avidnote, an AI platform designed for research, is compared with manual analysis methods for theme generation. The findings show that Avidnote provides fast theme generation, resulting in significant time and cost-saving benefits. However, both similarities and differences between human and Avidnote-generated themes were observed, raising some concerns regarding the internal validity of AI-generated themes compared to traditional manual analysis. Avidnote can be a valuable supplementary tool in the analysis phase of research, as it has the potential to increase efficiency, reduce bias, reveal subtle themes, and help to compare and contrast themes. However, fundamental concerns persist regarding the robustness, generalisability, credibility, reliability and trustworthiness of qualitative research when using AI technologies. Ethical considerations, such as data security and privacy, also need to be addressed in research settings. AI platforms should not be considered a substitute for critical thinking and personal interpretations, as these are unique skills inherent to humans. Researchers must maintain their fundamental role in determining research objectives and interpreting qualitative data to ensure methodological rigour. Future iterations of Avidnote are likely to address current challenges as advancements in AI continue to evolve. Further research is recommended to assess AI tools tailored for research purposes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nojego完成签到,获得积分10
12秒前
积极的中蓝完成签到 ,获得积分10
22秒前
我是笨蛋完成签到 ,获得积分10
1分钟前
iwsaml完成签到 ,获得积分10
1分钟前
中西西完成签到 ,获得积分10
1分钟前
科研通AI5应助萝卜猪采纳,获得10
2分钟前
2分钟前
萝卜猪发布了新的文献求助10
2分钟前
akmdh完成签到,获得积分10
2分钟前
gtgwm完成签到,获得积分10
2分钟前
科研小白完成签到 ,获得积分10
3分钟前
3分钟前
huazhangchina完成签到 ,获得积分10
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
情怀应助科研通管家采纳,获得10
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
小马甲应助科研通管家采纳,获得10
4分钟前
Slemon完成签到,获得积分10
4分钟前
充电宝应助gszy1975采纳,获得10
4分钟前
4分钟前
萨尔莫斯完成签到,获得积分10
4分钟前
yanghuige发布了新的文献求助10
4分钟前
科研通AI5应助yanghuige采纳,获得10
4分钟前
碗碗豆喵完成签到 ,获得积分10
5分钟前
迷茫的一代完成签到,获得积分10
5分钟前
5分钟前
6分钟前
ys发布了新的文献求助10
6分钟前
紫熊完成签到,获得积分10
6分钟前
传奇3应助科研通管家采纳,获得10
6分钟前
CipherSage应助科研通管家采纳,获得10
6分钟前
6分钟前
SCI信手拈来完成签到,获得积分10
7分钟前
7分钟前
gszy1975发布了新的文献求助10
7分钟前
大雪封山完成签到,获得积分10
8分钟前
lanxinge完成签到 ,获得积分20
10分钟前
Boren完成签到,获得积分10
11分钟前
12分钟前
12分钟前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819950
求助须知:如何正确求助?哪些是违规求助? 3362858
关于积分的说明 10418862
捐赠科研通 3081189
什么是DOI,文献DOI怎么找? 1695009
邀请新用户注册赠送积分活动 814791
科研通“疑难数据库(出版商)”最低求助积分说明 768522