Multimodal medical image‐to‐image translation via variational autoencoder latent space mapping

计算机科学 人工智能 医学影像学 图像配准 计算机视觉 翻译(生物学) 潜影 图像翻译 空格(标点符号) 模式识别(心理学) 自编码 图像处理 图像(数学) 人工神经网络 生物 基因 信使核糖核酸 操作系统 生物化学
作者
Zhiwen Liang,Mengjie Cheng,Jinhui Ma,Ying Hu,Song Li,Xin Tian
出处
期刊:Medical Physics [Wiley]
卷期号:52 (7): e17912-e17912 被引量:1
标识
DOI:10.1002/mp.17912
摘要

Abstract Background Medical image translation has become an essential tool in modern radiotherapy, providing complementary information for target delineation and dose calculation. However, current approaches are constrained by their modality‐specific nature, requiring separate model training for each pair of imaging modalities. This limitation hinders the efficient deployment of comprehensive multimodal solutions in clinical practice. Purpose To develop a unified image translation method using variational autoencoder (VAE) latent space mapping, which enables flexible conversion between different medical imaging modalities to meet clinical demands. Methods We propose a three‐stage approach to construct a unified image translation model. Initially, a VAE is trained to learn a shared latent space for various medical images. A stacked bidirectional transformer is subsequently utilized to learn the mapping between different modalities within the latent space under the guidance of the image modality. Finally, the VAE decoder is fine‐tuned to improve image quality. Our internal dataset collected paired imaging data from 87 head and neck cases, with each case containing cone beam computed tomography (CBCT), computed tomography (CT), MR T1c, and MR T2W images. The effectiveness of this strategy is quantitatively evaluated on our internal dataset and a public dataset by the mean absolute error (MAE), peak‐signal‐to‐noise ratio (PSNR), and structural similarity index (SSIM). Additionally, the dosimetry characteristics of the synthetic CT images are evaluated, and subjective quality assessments of the synthetic MR images are conducted to determine their clinical value. Results The VAE with the Kullback‒Leibler (KL)‐16 image tokenizer demonstrates superior image reconstruction ability, achieving a Fréchet inception distance (FID) of 4.84, a PSNR of 32.80 dB, and an SSIM of 92.33%. In synthetic CT tasks, the model shows greater accuracy in intramodality translations than in cross‐modality translations, as evidenced by an MAE of 21.60 ± 8.80 Hounsfield unit (HU) in the CBCT‐to‐CT task and 45.23 ± 13.21 HU/47.55 ± 13.88 in the MR T1c/T2w‐to‐CT tasks. For the cross‐contrast MR translation tasks, the results are very close, with mean PSNR and SSIM values of 26.33 ± 1.36 dB and 85.21% ± 2.21%, respectively, for the T1c‐to‐T2w translation and 26.03 ± 1.67 dB and 85.73% ± 2.66%, respectively, for the T2w‐to‐T1c translation. Dosimetric results indicate that all the gamma pass rates for synthetic CTs are higher than 99% for photon intensity‐modulated radiation therapy (IMRT) planning. However, the subjective quality assessment scores for synthetic MR images are lower than those for real MR images. Conclusions The proposed three‐stage approach successfully develops a unified image translation model that can effectively handle a wide range of medical image translation tasks. This flexibility and effectiveness make it a valuable tool for clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
两只棚猫完成签到,获得积分10
1秒前
123发布了新的文献求助10
1秒前
1700360436完成签到,获得积分10
1秒前
坚定迎天完成签到,获得积分10
1秒前
2秒前
tang123发布了新的文献求助30
2秒前
17720485712完成签到,获得积分10
2秒前
2秒前
2秒前
cola完成签到,获得积分10
3秒前
小胖鱼发布了新的文献求助10
3秒前
3秒前
lieditongxu发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
酷波er应助WangXinlin采纳,获得10
4秒前
754完成签到,获得积分10
4秒前
xunmizizai完成签到,获得积分10
4秒前
努力学习完成签到,获得积分10
4秒前
佩奇完成签到,获得积分10
4秒前
领导范儿应助ZYP采纳,获得10
4秒前
bfsd凡完成签到 ,获得积分10
4秒前
老实的棉花糖完成签到,获得积分10
5秒前
李可以完成签到 ,获得积分10
5秒前
pkaff发布了新的文献求助20
5秒前
司康发布了新的文献求助10
5秒前
sinmon发布了新的文献求助10
6秒前
研友_nEoMy8发布了新的文献求助10
6秒前
英俊的铭应助风间琉璃采纳,获得10
7秒前
7秒前
山山而川发布了新的文献求助10
7秒前
HHH发布了新的文献求助10
7秒前
7秒前
华仔应助二马三乡采纳,获得10
7秒前
Criminology34应助手抓饼啊采纳,获得10
7秒前
書生发布了新的文献求助10
7秒前
努力学习发布了新的文献求助10
7秒前
lxy发布了新的文献求助10
8秒前
活泼的心锁完成签到,获得积分10
8秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587595
求助须知:如何正确求助?哪些是违规求助? 4670789
关于积分的说明 14784044
捐赠科研通 4623168
什么是DOI,文献DOI怎么找? 2531360
邀请新用户注册赠送积分活动 1500028
关于科研通互助平台的介绍 1468099