Regulating Oxygen Vacancies to Enhance Dipole and Interface Polarization for Highly Efficient Electromagnetic Wave Absorption in SiC@MnO2 Nanocomposites

材料科学 偶极子 极化(电化学) 纳米复合材料 吸收(声学) 接口(物质) 化学物理 氧气 光电子学 纳米技术 化学工程 凝聚态物理 物理化学 复合材料 化学 物理 有机化学 毛细管数 毛细管作用 工程类
作者
Yukun Miao,Anguo Cui,Chang Wang,Zhongning Tian,Ting Wang,Jinyuan Liu,Qianqian Jia,Zhenjiang Li,Meng Zhang
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202503394
摘要

Abstract At present, atomic‐scale defect engineering has become a primary strategy for precisely regulating the inherent properties associated with the electronic structure of semiconductors. However, concurrent phenomena and factors during the introduction of defects constrain researchers’ understanding of the correlation between desired defects in various transition metal oxides, electromagnetic parameters, and electromagnetic wave absorption. In this study, MnO 2 nanoneedle arrays are pre‐prepared on the surface of SiC nanowire‐based carriers via a hydrothermal method, subsequently, oxygen vacancy is successfully introduced into the as‐fabricated sample by a simple calcination process. By precisely adjusting the heat‐treatment temperature, the oxygen vacancy accumulation‐induced in situ phase transformation from MnO 2 to Mn 3 O 4 , creating intrinsic heterointerfaces. Under the synergistic effects of vacancy‐induced dipole polarization and interfacial polarization of derived MnO 2 @Mn 3 O 4 heterogenerous interface, the optimal sample exhibits a minimum reflection loss (RL min ) of −47.96 dB at a matching thickness of 1.90 mm, along with a favorable effective absorption bandwidth (EAB) of 6.40 GHz covering the entire Ku band at a matching thickness of 2.02 mm. This work pionners a defect‐driven phase transition strategy to elucidate the relationship between oxygen vacancy concentration, heterostructure interface properties, and EMW absorption capabilities, paving the way for practical application of defect engineering in EMW absorption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助科研通管家采纳,获得30
1秒前
隐形曼青应助科研通管家采纳,获得30
1秒前
Akim应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
gao_yiyi应助科研通管家采纳,获得20
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
3秒前
八卦的兔子完成签到,获得积分10
3秒前
sokach发布了新的文献求助10
4秒前
5秒前
Francesca发布了新的文献求助10
5秒前
qqqq发布了新的文献求助10
5秒前
7秒前
tt完成签到,获得积分10
8秒前
赘婿应助asudvbcbjd采纳,获得20
8秒前
Summer发布了新的文献求助10
9秒前
sokach完成签到,获得积分10
9秒前
温柔翰发布了新的文献求助10
9秒前
9秒前
10秒前
Wtony发布了新的文献求助10
11秒前
彭于晏应助我叫高帅采纳,获得20
12秒前
Voskov完成签到,获得积分10
12秒前
小明发布了新的文献求助30
14秒前
共享精神应助调皮的西装采纳,获得10
14秒前
天天快乐应助SuzhenZH采纳,获得10
14秒前
yg19960114发布了新的文献求助10
15秒前
nusiew发布了新的文献求助10
17秒前
SciGPT应助Summer采纳,获得10
17秒前
000完成签到,获得积分10
18秒前
18秒前
苏我入鹿发布了新的文献求助10
19秒前
Cuisine完成签到 ,获得积分10
21秒前
充电宝应助尊敬灵松采纳,获得10
21秒前
科研通AI2S应助Xx采纳,获得10
22秒前
打打应助砚草难书采纳,获得10
23秒前
科目三应助abcvuhk采纳,获得10
23秒前
Rochester完成签到,获得积分10
24秒前
打打应助kris采纳,获得10
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787560
求助须知:如何正确求助?哪些是违规求助? 3333152
关于积分的说明 10259611
捐赠科研通 3048676
什么是DOI,文献DOI怎么找? 1673197
邀请新用户注册赠送积分活动 801720
科研通“疑难数据库(出版商)”最低求助积分说明 760338