法拉第效率
阳极
材料科学
涂层
锂(药物)
阴极
电解质
石墨
电化学
电镀(地质)
金属
过渡金属
化学工程
扩散
电极
冶金
纳米技术
化学
有机化学
地球物理学
催化作用
物理化学
内分泌学
工程类
地质学
物理
热力学
医学
作者
Chae Yoon Im,Ga Yeon Lee,Jong Gyeom Kim,Jeong Ho Choi,Suk Jun Kim
标识
DOI:10.1002/adma.202501261
摘要
Abstract Anode‐free Li‐ion batteries (AFLBs) and Li‐metal batteries (LMBs) offer superior energy densities compared to conventional Li‐ion batteries with graphite anodes. However, they degrade faster owing to their lower Coulombic efficiency, primarily caused by uneven Li deposition on the current collector (CC) in AFLBs or the Li‐metal anode (LMA) in LMBs. Coating CCs and LMAs has emerged as a promising strategy to enhance the CE. Coating CCs and LMAs with PtTe 2 , PdTe 2 , and NiTe 2 —metallic 2D transition metal dichalcogenides—reveals the critical factors for achieving uniform Li plating. The PtTe 2 coating facilitates rapid Li surface diffusivity, while the PdTe 2 and NiTe 2 coatings provide shorter diffusion paths for Li adatoms on the CCs and LMAs. In addition, Li 2 Te, formed as a byproduct of the decomposition of PdTe 2 and NiTe 2 during Li plating, reduces the critical nucleus size by minimizing the interfacial energy between the electrolyte and the plated Li. PtTe 2 more effectively enhances the AFLB cycling performance, whereas PdTe 2 and NiTe 2 are more advantageous for LMBs. Notably, a 5‐nm‐thick PdTe 2 coating on the LMA achieves 80% capacity retention after 450 cycles using a LiFePO 4 cathode (3 mAh cm −2 ) at a 0.5 C‐rate.
科研通智能强力驱动
Strongly Powered by AbleSci AI