Artificial Intelligence in Endoscopy for Predicting Helicobacter pylori Infection: A Systematic Review and Meta‐Analysis

医学 荟萃分析 内科学 胃肠病学 置信区间 幽门螺杆菌 幽门螺杆菌感染 内窥镜检查
作者
Yiwen Jiang,Hankun Yan,J. J. Cui,Kaiqiang Yang,Yue An
出处
期刊:Helicobacter [Wiley]
卷期号:30 (2): e70026-e70026 被引量:6
标识
DOI:10.1111/hel.70026
摘要

ABSTRACT Purpose This meta‐analysis aimed to assess the diagnostic performance of artificial intelligence (AI) based on endoscopy for detecting Helicobacter pylori ( H. pylori ) infection. Methods A comprehensive literature search was conducted across PubMed, Embase, and Web of Science to identify relevant studies published up to January 10, 2025. The selected studies focused on the diagnostic accuracy of AI in detecting H. pylori . A bivariate random‐effects model was employed to calculate pooled sensitivity and specificity, both presented with 95% confidence intervals (CIs). Study heterogeneity was assessed using the I 2 statistic. Results Of 604 studies identified, 16 studies (25,002 images or patients) were included. For the internal validation set, the pooled sensitivity, specificity, and area under the curve (AUC) for detecting H. pylori were 0.91 (95% CI: 0.84–0.95), 0.91 (95% CI: 0.86–0.94), and 0.96 (95% CI: 0.94–0.97), respectively. For the external validation set, the pooled sensitivity, specificity, and AUC were 0.91 (95% CI: 0.86–0.95), 0.94 (95% CI: 0.90–0.97), and 0.98 (95% CI: 0.96–0.99). For junior clinicians, the pooled sensitivity, specificity, and AUC were 0.76 (95% CI: 0.66–0.83), 0.75 (95% CI: 0.70–0.80), and 0.81 (95% CI: 0.77–0.84). For senior clinicians, the pooled sensitivity, specificity, and AUC were 0.81 (95% CI: 0.74–0.86), 0.89 (95% CI: 0.86–0.91), and 0.92 (95% CI: 0.90–0.94). Conclusions Endoscopy‐based AI demonstrates higher diagnostic performance compared to both junior and senior endoscopists. However, the high heterogeneity among studies limits the strength of these findings, and further research with external validation datasets is necessary to confirm the results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
秦槐完成签到 ,获得积分10
2秒前
2秒前
3秒前
3秒前
春花发布了新的文献求助10
3秒前
搞怪香彤完成签到,获得积分10
3秒前
思源应助老实的鞋垫采纳,获得30
3秒前
周老师完成签到 ,获得积分10
4秒前
4秒前
5秒前
张张完成签到 ,获得积分10
5秒前
Lris发布了新的文献求助10
5秒前
冰选若南发布了新的文献求助10
6秒前
6秒前
6秒前
乐观荣轩完成签到,获得积分10
7秒前
RE发布了新的文献求助10
7秒前
7秒前
我是老大应助魔幻以莲采纳,获得10
7秒前
Sloan发布了新的文献求助10
7秒前
8秒前
华仔应助高兴的万宝路采纳,获得10
8秒前
Sharon完成签到,获得积分10
8秒前
明亮冰安完成签到,获得积分10
8秒前
8秒前
大力衫完成签到,获得积分10
8秒前
9秒前
Jae发布了新的文献求助10
9秒前
方波发布了新的文献求助10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
项阑悦发布了新的文献求助10
10秒前
jkljlj发布了新的文献求助10
10秒前
reece完成签到 ,获得积分10
11秒前
丘比特应助Lris采纳,获得10
11秒前
aosiyi发布了新的文献求助10
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776732
求助须知:如何正确求助?哪些是违规求助? 5630711
关于积分的说明 15443875
捐赠科研通 4908787
什么是DOI,文献DOI怎么找? 2641419
邀请新用户注册赠送积分活动 1589404
关于科研通互助平台的介绍 1543973