清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Physics-informed neural network compression mechanism for airfoil flow field prediction

物理 翼型 机制(生物学) 人工神经网络 流量(数学) 领域(数学) 压缩(物理) 机械 统计物理学 航空航天工程 经典力学 人工智能 热力学 纯数学 工程类 量子力学 计算机科学 数学
作者
Hongyu Huang,yunxia ye,Bohan Zhang,Zhijiang Xie,Fei Xu,Chao Chen
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (3)
标识
DOI:10.1063/5.0255692
摘要

Deep learning has shown great potential in improving the efficiency of airfoil flow field prediction by reducing the computational cost compared to traditional numerical methods. However, the large number of parameters in deep learning models can lead to excessive resource consumption, hurting their performance in real-time applications. To address these challenges, we propose a novel compression mechanism called Physics-Informed Neural Network Compression Mechanism (PINNCoM) to reduce model size and improve efficiency. PINNCoM consists of two stages: knowledge distillation and self-adaptive pruning. The knowledge distillation extracts key parameters from a given teacher model, i.e., a neural network model for airfoil flow field prediction, to construct a student model. By designing a physical information loss term based on the Navier–Stokes equations during the knowledge distillation, the student model can maintain fewer parameters and accurately predict the flow field in the meantime. The second stage is self-adaptive pruning, which further compresses the student model by removing redundant channels in the network while preserving its accuracy. Specifically, a reward function is designed to incorporate both physical and channel information to ensure the prediction results align with physical laws while prioritizing critical channels for retention, enabling a flexible and efficient pruning mechanism. Experimental results on airfoil flow field prediction datasets demonstrate that PINNCoM effectively reduces computational complexity with minimal accuracy loss. The proposed PINNCoM mechanism innovatively integrates physical knowledge distillation with adaptive pruning to ensure both model efficiency and physical consistency, providing a new paradigm for physically constrained neural network compression in fluid dynamics applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
heisa完成签到,获得积分10
31秒前
Criminology34应助科研通管家采纳,获得10
35秒前
Criminology34应助科研通管家采纳,获得10
35秒前
Criminology34应助科研通管家采纳,获得10
35秒前
Criminology34应助科研通管家采纳,获得10
35秒前
Criminology34应助科研通管家采纳,获得10
35秒前
凡舍完成签到 ,获得积分10
50秒前
大医仁心完成签到 ,获得积分10
1分钟前
碗碗豆喵完成签到 ,获得积分10
1分钟前
Mason完成签到,获得积分10
2分钟前
辣小扬完成签到 ,获得积分10
2分钟前
白天亮完成签到,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
attention完成签到,获得积分10
2分钟前
Jasper应助lesliechan采纳,获得10
3分钟前
两个榴莲完成签到,获得积分0
3分钟前
3分钟前
3分钟前
lsl完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
mama完成签到 ,获得积分10
4分钟前
drhwang完成签到,获得积分10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
共享精神应助CC采纳,获得30
4分钟前
5分钟前
CC发布了新的文献求助30
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651112
求助须知:如何正确求助?哪些是违规求助? 4783297
关于积分的说明 15053122
捐赠科研通 4809844
什么是DOI,文献DOI怎么找? 2572683
邀请新用户注册赠送积分活动 1528665
关于科研通互助平台的介绍 1487687