Physics-informed neural network compression mechanism for airfoil flow field prediction

物理 翼型 机制(生物学) 人工神经网络 流量(数学) 领域(数学) 压缩(物理) 机械 统计物理学 航空航天工程 经典力学 人工智能 热力学 数学 量子力学 计算机科学 纯数学 工程类
作者
Hongyu Huang,yunxia ye,Bohan Zhang,Zhijiang Xie,Fei Xu,Chao Chen
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (3)
标识
DOI:10.1063/5.0255692
摘要

Deep learning has shown great potential in improving the efficiency of airfoil flow field prediction by reducing the computational cost compared to traditional numerical methods. However, the large number of parameters in deep learning models can lead to excessive resource consumption, hurting their performance in real-time applications. To address these challenges, we propose a novel compression mechanism called Physics-Informed Neural Network Compression Mechanism (PINNCoM) to reduce model size and improve efficiency. PINNCoM consists of two stages: knowledge distillation and self-adaptive pruning. The knowledge distillation extracts key parameters from a given teacher model, i.e., a neural network model for airfoil flow field prediction, to construct a student model. By designing a physical information loss term based on the Navier–Stokes equations during the knowledge distillation, the student model can maintain fewer parameters and accurately predict the flow field in the meantime. The second stage is self-adaptive pruning, which further compresses the student model by removing redundant channels in the network while preserving its accuracy. Specifically, a reward function is designed to incorporate both physical and channel information to ensure the prediction results align with physical laws while prioritizing critical channels for retention, enabling a flexible and efficient pruning mechanism. Experimental results on airfoil flow field prediction datasets demonstrate that PINNCoM effectively reduces computational complexity with minimal accuracy loss. The proposed PINNCoM mechanism innovatively integrates physical knowledge distillation with adaptive pruning to ensure both model efficiency and physical consistency, providing a new paradigm for physically constrained neural network compression in fluid dynamics applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烂漫的访天完成签到,获得积分10
1秒前
rhsfdfb发布了新的文献求助10
3秒前
4秒前
年轻灯泡完成签到,获得积分10
4秒前
ypres完成签到 ,获得积分10
4秒前
5秒前
6秒前
英姑应助isyfear采纳,获得10
7秒前
minkeyantong发布了新的文献求助10
7秒前
lmc发布了新的文献求助10
7秒前
lune完成签到,获得积分10
8秒前
华仔应助桑桑采纳,获得10
10秒前
所所应助漂亮的问兰采纳,获得10
11秒前
11秒前
傲娇如天发布了新的文献求助10
12秒前
lune发布了新的文献求助10
12秒前
12秒前
洛洛发布了新的文献求助10
12秒前
浮游应助老鼠咕噜采纳,获得10
14秒前
小二郎应助李庭福采纳,获得10
14秒前
2003zfc完成签到,获得积分10
16秒前
一天三个蛋完成签到,获得积分10
16秒前
tudou发布了新的文献求助10
16秒前
难过的丹烟完成签到,获得积分10
17秒前
19秒前
孤独凝芙发布了新的文献求助10
19秒前
lydy1993完成签到,获得积分10
19秒前
wangxin发布了新的文献求助10
19秒前
落寞的诗云完成签到,获得积分10
19秒前
ppxx完成签到,获得积分10
20秒前
24秒前
小二郎应助二十而耳顺采纳,获得10
25秒前
小鲨鱼完成签到,获得积分10
25秒前
兆吉完成签到 ,获得积分10
25秒前
26秒前
氿囶完成签到,获得积分10
27秒前
YJ888发布了新的文献求助10
27秒前
和谐的阁发布了新的文献求助10
27秒前
28秒前
wangxin完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299457
求助须知:如何正确求助?哪些是违规求助? 4447594
关于积分的说明 13843316
捐赠科研通 4333203
什么是DOI,文献DOI怎么找? 2378632
邀请新用户注册赠送积分活动 1373923
关于科研通互助平台的介绍 1339452