清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Sustainable Life-Cycle Maintenance Policymaking for Network-Level Deteriorating Bridges with a Convolutional Autoencoder–Structured Reinforcement Learning Agent

强化学习 地铁列车时刻表 计算机科学 持续性 桥(图论) 最佳维护 碳足迹 环境经济学 运输工程 工程类 可靠性工程 温室气体 经济 人工智能 生物 医学 操作系统 内科学 生态学
作者
Xiaoming Lei,You Dong,Dan M. Frangopol
出处
期刊:Journal of Bridge Engineering [American Society of Civil Engineers]
卷期号:28 (9) 被引量:42
标识
DOI:10.1061/jbenf2.beeng-6159
摘要

Bridges play a significant role in urban areas, and their performance and safety are highly related to the carbon emissions of infrastructure systems. Previous studies have mainly offered maintenance policies that balance structural safety with overall costs. Considering the goal of achieving near-zero global carbon emissions by 2050, this study proposes a policymaking agent based on a convolutional autoencoder–structured deep-Q network (ConvAE-DQN) for managing deteriorating bridges at the network level while considering sustainability performance. This agent considers environmental, economic, and safety metrics, including spatially correlated structural failure probability, traffic volume, bridge size, and others, which are transformed into a multiattribute utility model to form the reward function. Reinforcement learning is employed to optimize the life-cycle maintenance planning to minimize the total carbon emissions and economic costs while maximizing regional safety performance. The proposed method is substantiated by developing sustainable life-cycle maintenance policies for an existing bridge network in Northern China. It is found that the proposed ConvAE-DQN policymaking agent could output efficient and sustainable life-cycle maintenance policies, which are annually stable and easy to schedule. The utility-based reward function enhances the stability and convergence efficiency of the algorithm. This study also assesses the impact of budget levels on network-level bridge safety and carbon footprint.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无悔完成签到 ,获得积分10
5秒前
大医仁心完成签到 ,获得积分10
25秒前
聪明的云完成签到 ,获得积分10
39秒前
稻子完成签到 ,获得积分10
1分钟前
dinglingling完成签到 ,获得积分10
1分钟前
研友_VZG7GZ应助耍酷平凡采纳,获得10
1分钟前
CHEN完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Arthur Zhu完成签到,获得积分10
1分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
熊猫胖胖WITH超人完成签到,获得积分20
3分钟前
3分钟前
耍酷平凡发布了新的文献求助10
3分钟前
3分钟前
ewxf2001发布了新的文献求助10
3分钟前
4分钟前
花园里的蒜完成签到 ,获得积分0
4分钟前
荔枝发布了新的文献求助20
4分钟前
ewxf2001完成签到,获得积分10
4分钟前
juan完成签到 ,获得积分10
4分钟前
cxwcn完成签到 ,获得积分10
4分钟前
Hiram完成签到,获得积分10
4分钟前
4分钟前
wmj完成签到,获得积分10
4分钟前
Ava应助落寞的又菡采纳,获得10
4分钟前
刚子完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
jiejie完成签到,获得积分10
6分钟前
6分钟前
沿途有你完成签到 ,获得积分10
6分钟前
耍酷平凡完成签到,获得积分10
6分钟前
荔枝发布了新的文献求助10
7分钟前
7分钟前
连安阳完成签到,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582521
求助须知:如何正确求助?哪些是违规求助? 4000238
关于积分的说明 12382295
捐赠科研通 3675277
什么是DOI,文献DOI怎么找? 2025775
邀请新用户注册赠送积分活动 1059428
科研通“疑难数据库(出版商)”最低求助积分说明 946108