A New Model for Blood Cancer Classification Based on Deep Learning Techniques

计算机科学 人工智能 慢性淋巴细胞白血病 深度学习 分类器(UML) 髓系白血病 预处理器 癌症 白血病 机器学习 特征提取 套细胞淋巴瘤 滤泡性淋巴瘤 医学 淋巴瘤 内科学
作者
Hagar Ibrahim Mohamed,Fahad Kamal Elsheref,Shrouk Reda Kamal
出处
期刊:International Journal of Advanced Computer Science and Applications [Science and Information Organization]
卷期号:14 (6) 被引量:3
标识
DOI:10.14569/ijacsa.2023.0140645
摘要

Artificial intelligence and deep learning algorithms have become essential fields in medical science. These algorithms help doctors detect diseases early, reduce the incidence of errors, and decrease the time required for disease diagnosis, thereby saving human lives. Deep learning models are widely used in Computer-Aided Diagnosis Systems (CAD) for the classification of various diseases, including blood cancer. Early diagnosis of blood cancer is crucial for effective treatment and saving patients' lives. Therefore, this study developed two distinct models to classify eight types of blood cancer. These types include follicular lymphoma (FL), mantle cell lymphoma (MCL), chronic lymphocytic leukemia (CLL), acute myeloid leukemia (AML), and the subtypes of acute lymphoblastic leukemia (ALL) known as early pre-B, pre-B, pro-B ALL, and benign. AML and ALL are specific classifications for human leukemia cancer, while FL, MCL, and CLL are specific classifications for lymphoma. Both models consist of different phases, including data collection, preprocessing, feature extraction techniques, and the classification process. The techniques applied in these phases are the same in both proposed models, except for the classification phase. The first model utilizes the VGG16 architecture, while the second model utilizes DenseNet-121. The results indicated that DenseNet-121 achieved a lower accuracy compared to VGG16. VGG16 exhibited excellent results, achieving an accuracy of 98.2% when classifying the eight classes. This outcome suggests that VGG16 is the most effective classifier for the utilized dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LIUJIE发布了新的文献求助10
1秒前
拓跋湘完成签到 ,获得积分0
1秒前
爆米花应助乏力的大师采纳,获得10
2秒前
苗条啤酒发布了新的文献求助10
2秒前
CC完成签到 ,获得积分10
5秒前
ls应助卢军杰采纳,获得10
6秒前
赘婿应助英俊白莲采纳,获得30
8秒前
9秒前
浮游应助科研通管家采纳,获得10
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
不想干活应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
NKTreg应助科研通管家采纳,获得10
10秒前
不想干活应助科研通管家采纳,获得10
10秒前
tinghai86应助科研通管家采纳,获得10
10秒前
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
鸣笛应助科研通管家采纳,获得20
11秒前
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得30
11秒前
11秒前
浮游应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
不想干活应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
12秒前
NKTreg应助科研通管家采纳,获得10
12秒前
松数发布了新的文献求助10
12秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4547326
求助须知:如何正确求助?哪些是违规求助? 3978277
关于积分的说明 12318591
捐赠科研通 3646879
什么是DOI,文献DOI怎么找? 2008395
邀请新用户注册赠送积分活动 1043972
科研通“疑难数据库(出版商)”最低求助积分说明 932554