Magnetic Nanoparticle-Based High-Performance Positive and Negative Magnetic Resonance Imaging Contrast Agents

超顺磁性 磁共振成像 纳米颗粒 纳米技术 磁性纳米粒子 材料科学 胶体 表面改性 核磁共振 对比度(视觉) 化学 生物医学工程 计算机科学 放射科 物理 医学 磁场 磁化 有机化学 物理化学 量子力学 人工智能
作者
Tirusew Tegafaw,Shuwen Liu,Mohammad Yaseen Ahmad,Abdullah Khamis Ali Al Saidi,Dan Zhao,Ying Liu,Sung-Wook Nam,Yongmin Chang,Gang Ho Lee
出处
期刊:Pharmaceutics [Multidisciplinary Digital Publishing Institute]
卷期号:15 (6): 1745-1745
标识
DOI:10.3390/pharmaceutics15061745
摘要

In recent decades, magnetic nanoparticles (MNPs) have attracted considerable research interest as versatile substances for various biomedical applications, particularly as contrast agents in magnetic resonance imaging (MRI). Depending on their composition and particle size, most MNPs are either paramagnetic or superparamagnetic. The unique, advanced magnetic properties of MNPs, such as appreciable paramagnetic or strong superparamagnetic moments at room temperature, along with their large surface area, easy surface functionalization, and the ability to offer stronger contrast enhancements in MRI, make them superior to molecular MRI contrast agents. As a result, MNPs are promising candidates for various diagnostic and therapeutic applications. They can function as either positive (T1) or negative (T2) MRI contrast agents, producing brighter or darker MR images, respectively. In addition, they can function as dual-modal T1 and T2 MRI contrast agents, producing either brighter or darker MR images, depending on the operational mode. It is essential that the MNPs are grafted with hydrophilic and biocompatible ligands to maintain their nontoxicity and colloidal stability in aqueous media. The colloidal stability of MNPs is critical in order to achieve a high-performance MRI function. Most of the MNP-based MRI contrast agents reported in the literature are still in the developmental stage. With continuous progress being made in the detailed scientific research on them, their use in clinical settings may be realized in the future. In this study, we present an overview of the recent developments in the various types of MNP-based MRI contrast agents and their in vivo applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
漠池完成签到 ,获得积分10
2秒前
lishui完成签到 ,获得积分10
2秒前
璇22完成签到 ,获得积分10
3秒前
3秒前
琪琪的发布了新的文献求助10
7秒前
8秒前
tony完成签到,获得积分10
18秒前
加拿大一枝黄花完成签到,获得积分10
18秒前
Zenglongying发布了新的文献求助10
22秒前
22秒前
隐形曼青应助琪琪的采纳,获得10
23秒前
科研通AI5应助meimei采纳,获得10
24秒前
化作繁星完成签到,获得积分10
26秒前
化作繁星发布了新的文献求助10
28秒前
wzgkeyantong完成签到,获得积分10
30秒前
30秒前
称心的笑阳完成签到,获得积分20
33秒前
meimei发布了新的文献求助10
36秒前
共享精神应助科研通管家采纳,获得10
38秒前
大模型应助科研通管家采纳,获得10
39秒前
小蘑菇应助科研通管家采纳,获得10
39秒前
Lucas应助科研通管家采纳,获得10
39秒前
科研通AI5应助科研通管家采纳,获得10
39秒前
WHL完成签到,获得积分20
39秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
所所应助科研通管家采纳,获得10
39秒前
CipherSage应助科研通管家采纳,获得10
39秒前
ding应助科研通管家采纳,获得10
39秒前
39秒前
Owen应助科研通管家采纳,获得10
39秒前
斯文败类应助科研通管家采纳,获得10
39秒前
39秒前
orixero应助科研通管家采纳,获得10
39秒前
田様应助科研通管家采纳,获得10
39秒前
李健应助科研通管家采纳,获得10
39秒前
852应助科研通管家采纳,获得10
39秒前
雨夜星空应助科研通管家采纳,获得10
39秒前
酷波er应助科研通管家采纳,获得20
39秒前
Hello应助科研通管家采纳,获得10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776633
求助须知:如何正确求助?哪些是违规求助? 3322152
关于积分的说明 10208826
捐赠科研通 3037339
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797603
科研通“疑难数据库(出版商)”最低求助积分说明 757921