Multi-Modal Interaction-Aware Motion Prediction at Unsignalized Intersections

计算机科学 交叉口(航空) 动态贝叶斯网络 情态动词 软件部署 运动(物理) 马尔可夫链 机器学习 人工智能 基线(sea) 隐马尔可夫模型 高级驾驶员辅助系统 贝叶斯概率 数据挖掘 运输工程 工程类 化学 海洋学 高分子化学 地质学 操作系统
作者
Vinicius Trentin,Antonio Artuñedo,Jorge Godoy,Jorge Villagrá
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:8 (5): 3349-3365 被引量:17
标识
DOI:10.1109/tiv.2023.3254657
摘要

Autonomous vehicle technologies have evolved quickly over the last few years, with safety being one of the key requirements for their full deployment. However, ensuring their safety while navigating through highly interactive and complex scenarios remains a critical challenge. To tackle this problem, intention estimation and motion prediction are fundamental. In this work, a method to infer the intentions, based on a Dynamic Bayesian Network (DBN), and predict the motion, using Markov Chains, of the nearby vehicles at unsignalized intersections is proposed. This approach considers all possible corridors of the surrounding traffic participants and takes into account their interactions to infer the probabilities of stopping or crossing the intersection, as well as the probability of being in each of the possible navigable corridors. To achieve this, the DBN is used to model the relationships between the observed states and the unobserved intentions of the nearby agents. The Markov Chain model, obtained from a kinematic model, is used to predict the future motions of the vehicles, taking into account their current state, their inferred intentions, and the uncertainty associated with the prediction. The resulting multi-modal motion predictions are sent to the ego vehicle to navigate through the scene. The proposed method is evaluated in 6 real situations extracted from publicly available datasets and is compared with a model-based and a learn-based baseline models. The results showed that the proposed method outperformed both baselines in terms of accuracy considering the metrics ADE and FDE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
球球尧伞耳完成签到,获得积分10
2秒前
笨笨十三完成签到 ,获得积分10
2秒前
小咔完成签到 ,获得积分10
2秒前
Microbiota完成签到,获得积分10
2秒前
小地蛋完成签到 ,获得积分10
3秒前
领导范儿应助zcious采纳,获得10
5秒前
wbing完成签到,获得积分20
5秒前
ZY发布了新的文献求助10
5秒前
学术小白发布了新的文献求助10
5秒前
5秒前
完美世界应助豆大福采纳,获得10
5秒前
5秒前
6秒前
7秒前
白鸽鸽完成签到,获得积分10
9秒前
9秒前
737发布了新的文献求助10
10秒前
11秒前
12秒前
酷波er应助阿庆采纳,获得10
13秒前
哈尼发布了新的文献求助10
13秒前
14秒前
14秒前
欧阳蛋蛋鸡完成签到 ,获得积分10
15秒前
coco完成签到 ,获得积分10
15秒前
17秒前
17秒前
LiJing666发布了新的文献求助10
17秒前
ling_lz发布了新的文献求助10
17秒前
科研通AI5应助路遥知马力采纳,获得10
19秒前
乐乐应助大方小白采纳,获得10
20秒前
WxChen发布了新的文献求助10
20秒前
GGBond完成签到 ,获得积分10
22秒前
24秒前
LiJing666完成签到,获得积分10
24秒前
忧伤的雅香完成签到,获得积分10
28秒前
今后应助酸柠檬本檬采纳,获得30
28秒前
kate发布了新的文献求助10
31秒前
31秒前
科研通AI2S应助liuxh123采纳,获得10
31秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843657
求助须知:如何正确求助?哪些是违规求助? 3385947
关于积分的说明 10543274
捐赠科研通 3106748
什么是DOI,文献DOI怎么找? 1711147
邀请新用户注册赠送积分活动 823921
科研通“疑难数据库(出版商)”最低求助积分说明 774390