已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

AptaDiff: de novo design and optimization of aptamers based on diffusion models

适体 指数富集配体系统进化 SELEX适体技术 计算生物学 生物信息学 贝叶斯优化 计算机科学 化学 生物 核糖核酸 分子生物学 人工智能 生物化学 基因
作者
Zhen Wang,Ziqi Liu,Wei Zhang,Yanjun Li,Yizhen Feng,Shaokang Lv,Han Diao,Zhaofeng Luo,Pengju Yan,Min He,Xiaolin Li
标识
DOI:10.1101/2023.11.25.568693
摘要

Abstract Aptamers are single-stranded nucleic acid ligands, featuring high affinity and specificity to target molecules. Traditionally they are identified from large DNA/RNA libraries using in vitro methods, like Systematic Evolution of Ligands by Exponential Enrichment (SELEX). However, these libraries capture only a small fraction of theoretical sequence space, and various aptamer candidates are constrained by actual sequencing capabilities from the experiment. Addressing this, we proposed AptaDiff, the first in silico aptamer design and optimization method based on the diffusion model. Our Aptadiff can generate aptamers beyond the constraints of high-throughput sequencing data, leveraging motif-dependent latent embeddings from variational autoencoder, and can optimize aptamers by affinity-guided aptamer generation according to Bayesian optimization. Comparative evaluations revealed AptaDiff’s superiority over existing aptamer generation methods in terms of quality and fidelity across four high-throughput screening data targeting distinct proteins. Moreover, Surface Plasmon Resonance (SPR) experiments were conducted to validate the binding affinity of aptamers generated through Bayesian optimization for two target proteins. The results unveiled a significant boost of 87.9% and 60.2% in RU values, along with a 3.6-fold and 2.4-fold decrease in KD values for the respective target proteins. Notably, the optimized aptamers demonstrated superior binding affinity compared to top experimental candidates selected through SELEX, underscoring the promising outcomes of our AptaDiff in accelerating the discovery of superior aptamers. Key Points We proposed AptaDiff, the first in silico aptamer design method based on the diffusion model. Aptadiff can generate aptamers beyond the constraints of high-throughput sequencing data. Aptadiff can optimize aptamers through affinity-guided generation via Bayesian optimization within a motif-dependent latent space, and the affinity of the optimized aptamers to the target protein is better than the best experimental candidate from traditional SELEX screening. Aptadiff consistently outperforms the current state-of-the-art method in terms of quality and fidelity across high-throughput screening data targeting distinct proteins.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
linshaoyu完成签到,获得积分10
刚刚
忧心的惜天完成签到 ,获得积分10
2秒前
比巴伯发布了新的文献求助10
5秒前
安晓慧完成签到 ,获得积分10
6秒前
叫我学弟完成签到 ,获得积分10
7秒前
能干寒松完成签到,获得积分10
8秒前
11秒前
醉熏的灵安完成签到 ,获得积分10
11秒前
单薄的英姑完成签到 ,获得积分10
13秒前
IfItheonlyone完成签到 ,获得积分10
14秒前
矜天完成签到 ,获得积分10
16秒前
许晴完成签到 ,获得积分10
18秒前
千早爱音完成签到,获得积分10
21秒前
秦梭璋完成签到 ,获得积分10
21秒前
kukudou2完成签到,获得积分20
25秒前
26秒前
比巴伯完成签到,获得积分10
26秒前
Zhu完成签到 ,获得积分10
28秒前
星辰大海应助生动怀蕾采纳,获得10
29秒前
Jasper应助MSYMC采纳,获得10
29秒前
所所应助啧啧采纳,获得30
32秒前
96121完成签到 ,获得积分10
32秒前
千早爱音应助linshaoyu采纳,获得10
38秒前
fan完成签到 ,获得积分10
41秒前
ZhaoY完成签到,获得积分10
43秒前
领导范儿应助GGGirafe采纳,获得10
43秒前
43秒前
51秒前
lige完成签到 ,获得积分10
52秒前
12A完成签到,获得积分10
54秒前
momo发布了新的文献求助50
57秒前
MSYMC给MSYMC的求助进行了留言
59秒前
酷酷的安柏完成签到 ,获得积分10
1分钟前
yes完成签到 ,获得积分10
1分钟前
ding应助yaoyp11采纳,获得10
1分钟前
1分钟前
古月完成签到,获得积分10
1分钟前
1分钟前
1分钟前
鱼儿完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5291051
求助须知:如何正确求助?哪些是违规求助? 4442208
关于积分的说明 13829504
捐赠科研通 4325125
什么是DOI,文献DOI怎么找? 2374008
邀请新用户注册赠送积分活动 1369374
关于科研通互助平台的介绍 1333502