亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

One-Week-Ahead Prediction of Cyanobacterial Harmful Algal Blooms in Iowa Lakes

环境科学 水质 决策树 水华 人工神经网络 特征选择 逻辑回归 机器学习 计算机科学 生态学 生物 营养物 浮游植物
作者
Paul Villanueva,Ji-Hoon Yang,Lorien Radmer,Xuewei Liang,Tania Leung,Kaoru Ikuma,Elizabeth D. Swanner,Adina Howe,Jaejin Lee,Paul Villanueva,Ji-Hoon Yang,Lorien Radmer,Xuewei Liang,Tania Leung,Kaoru Ikuma,Elizabeth D. Swanner,Adina Howe,Jaejin Lee
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (49): 20636-20646 被引量:21
标识
DOI:10.1021/acs.est.3c07764
摘要

Cyanobacterial harmful algal blooms (CyanoHABs) pose serious risks to inland water resources. Despite advancements in our understanding of associated environmental factors and modeling efforts, predicting CyanoHABs remains challenging. Leveraging an integrated water quality data collection effort in Iowa lakes, this study aimed to identify factors associated with hazardous microcystin levels and develop one-week-ahead predictive classification models. Using water samples from 38 Iowa lakes collected between 2018 and 2021, feature selection was conducted considering both linear and nonlinear properties. Subsequently, we developed three model types (Neural Network, XGBoost, and Logistic Regression) with different sampling strategies using the nine selected variables (mcyA_M, TKN, % hay/pasture, pH, mcyA_M:16S, % developed, DOC, dewpoint temperature, and ortho-P). Evaluation metrics demonstrated the strong performance of the Neural Network with oversampling (ROC-AUC 0.940, accuracy 0.861, sensitivity 0.857, specificity 0.857, LR+ 5.993, and 1/LR- 5.993), as well as the XGBoost with downsampling (ROC-AUC 0.944, accuracy 0.831, sensitivity 0.928, specificity 0.833, LR+ 5.557, and 1/LR- 11.569). This study exhibited the intricacies of modeling with limited data and class imbalances, underscoring the importance of continuous monitoring and data collection to improve predictive accuracy. Also, the methodologies employed can serve as meaningful references for researchers tackling similar challenges in diverse environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
萝卜猪完成签到,获得积分10
22秒前
35秒前
42秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
56秒前
会会完成签到 ,获得积分20
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
yys10l完成签到,获得积分10
2分钟前
yys完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
QCB完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
NexusExplorer应助契合采纳,获得10
3分钟前
3分钟前
契合发布了新的文献求助10
3分钟前
3分钟前
4分钟前
hdnej发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
爱思考的小笨笨完成签到,获得积分10
5分钟前
5分钟前
5分钟前
大模型应助李文达采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413316
求助须知:如何正确求助?哪些是违规求助? 4530416
关于积分的说明 14122927
捐赠科研通 4445494
什么是DOI,文献DOI怎么找? 2439208
邀请新用户注册赠送积分活动 1431244
关于科研通互助平台的介绍 1408756