Comprehensiveness, Accuracy, and Readability of Exercise Recommendations Provided by an AI-Based Chatbot: Mixed Methods Study

可读性 聊天机器人 医学 医疗保健 物理疗法 医学教育 计算机科学 人工智能 经济增长 经济 程序设计语言
作者
Amanda L. Zaleski,Rachel S. Berkowsky,Kelly Jean Thomas Craig,Linda S. Pescatello
出处
期刊:JMIR medical education [JMIR Publications]
卷期号:10: e51308-e51308
标识
DOI:10.2196/51308
摘要

Background Regular physical activity is critical for health and disease prevention. Yet, health care providers and patients face barriers to implement evidence-based lifestyle recommendations. The potential to augment care with the increased availability of artificial intelligence (AI) technologies is limitless; however, the suitability of AI-generated exercise recommendations has yet to be explored. Objective The purpose of this study was to assess the comprehensiveness, accuracy, and readability of individualized exercise recommendations generated by a novel AI chatbot. Methods A coding scheme was developed to score AI-generated exercise recommendations across ten categories informed by gold-standard exercise recommendations, including (1) health condition–specific benefits of exercise, (2) exercise preparticipation health screening, (3) frequency, (4) intensity, (5) time, (6) type, (7) volume, (8) progression, (9) special considerations, and (10) references to the primary literature. The AI chatbot was prompted to provide individualized exercise recommendations for 26 clinical populations using an open-source application programming interface. Two independent reviewers coded AI-generated content for each category and calculated comprehensiveness (%) and factual accuracy (%) on a scale of 0%-100%. Readability was assessed using the Flesch-Kincaid formula. Qualitative analysis identified and categorized themes from AI-generated output. Results AI-generated exercise recommendations were 41.2% (107/260) comprehensive and 90.7% (146/161) accurate, with the majority (8/15, 53%) of inaccuracy related to the need for exercise preparticipation medical clearance. Average readability level of AI-generated exercise recommendations was at the college level (mean 13.7, SD 1.7), with an average Flesch reading ease score of 31.1 (SD 7.7). Several recurring themes and observations of AI-generated output included concern for liability and safety, preference for aerobic exercise, and potential bias and direct discrimination against certain age-based populations and individuals with disabilities. Conclusions There were notable gaps in the comprehensiveness, accuracy, and readability of AI-generated exercise recommendations. Exercise and health care professionals should be aware of these limitations when using and endorsing AI-based technologies as a tool to support lifestyle change involving exercise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
xj455完成签到,获得积分20
1秒前
2秒前
2秒前
积极的千雁完成签到,获得积分10
3秒前
暴扣三米线应助Stephendo采纳,获得10
3秒前
彭于晏应助Yummy采纳,获得10
4秒前
ltutui7发布了新的文献求助10
5秒前
Nienie完成签到,获得积分20
6秒前
cc发布了新的文献求助10
6秒前
6秒前
6秒前
Doctor.Xie完成签到,获得积分10
6秒前
7秒前
顺心凡发布了新的文献求助10
7秒前
8秒前
8秒前
fang完成签到,获得积分10
9秒前
9秒前
Tzzl0226发布了新的文献求助10
9秒前
10秒前
极少发生的重复性发作完成签到,获得积分10
11秒前
Qiu发布了新的文献求助10
11秒前
Wayne完成签到,获得积分0
11秒前
务实寒天发布了新的文献求助10
12秒前
12秒前
何YI发布了新的文献求助10
12秒前
12秒前
斯文败类应助欣慰的雁露采纳,获得10
13秒前
赖林发布了新的文献求助10
13秒前
Serena发布了新的文献求助10
13秒前
13秒前
超A发布了新的文献求助10
13秒前
科研通AI2S应助xj455采纳,获得10
13秒前
大雄发布了新的文献求助10
14秒前
14秒前
无敌通完成签到,获得积分10
15秒前
淡然冬灵发布了新的文献求助10
16秒前
诶呀发布了新的文献求助10
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799915
求助须知:如何正确求助?哪些是违规求助? 3345282
关于积分的说明 10324507
捐赠科研通 3061843
什么是DOI,文献DOI怎么找? 1680550
邀请新用户注册赠送积分活动 807138
科研通“疑难数据库(出版商)”最低求助积分说明 763491