亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

KI-MAG: A knowledge-infused abstractive question answering system in medical domain

计算机科学 正确性 一般化 人工智能 答疑 自然语言处理 背景(考古学) 领域(数学分析) 领域知识 发电机(电路理论) 程序设计语言 数学 数学分析 古生物学 功率(物理) 物理 量子力学 生物
作者
Aizan Zafar,Sovan Kumar Sahoo,Harsh Bhardawaj,Amitava Das,Asif Ekbal
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:571: 127141-127141 被引量:11
标识
DOI:10.1016/j.neucom.2023.127141
摘要

Abstractive question-answering (QA) has emerged as a prominent area in Natural Language Processing (NLP) due to its ability to produce concise and human-like responses, particularly with the advancement of Large Language Models. Despite its potential, abstractive QA suffers from challenges like the need for extensive training data and the generation of incorrect entities and out-of-context words in the responses. In safety-critical domains like medical and clinical settings, such issues are unacceptable and may compromise the accuracy and reliability of generated answers. We proposed KI-MAG (Knowledge-Infused Medical Abstractive Generator) model, a novel Knowledge-Infused Abstractive Question Answering System specifically designed for the medical domain. KI-MAG aims to address the aforementioned limitations and enhance the correctness of generated responses while mitigating data sparsity concerns. The KI-MAG system produces more precise and informative answers by incorporating relevant medical entities into the model’s generation process. Furthermore, we adopt a synthetic data generation approach using question-answer pairs to overcome the challenge of limited training data in the medical domain. These synthetic pairs augment the original dataset, resulting in better model generalization and improved performance. Our extensive experimental evaluations demonstrate the effectiveness of the KI-MAG system. Compared to traditional abstractive QA models, our approach exhibits a substantial increase of approximately 15% in Blue-1, Blue-2, Blue-3, and Blue-4 scores, indicating a remarkable improvement in answer accuracy and overall quality of responses. Overall, our Knowledge-Infused Abstractive Question Answering System in the Medical Domain (KI-MAG) presents a promising solution to enhance the performance and reliability of abstractive QA models in safety-critical medical applications where precision and correctness of answers are of utmost importance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
危机的慕卉完成签到 ,获得积分10
3秒前
LRRRrRT完成签到,获得积分10
7秒前
Ava应助ago采纳,获得10
11秒前
清心寡欲完成签到,获得积分10
17秒前
平淡如天完成签到,获得积分10
22秒前
战神林北完成签到,获得积分10
22秒前
Orange应助战神林北采纳,获得10
26秒前
27秒前
快乐听南发布了新的文献求助10
31秒前
37秒前
和谐雨竹发布了新的文献求助10
41秒前
轩轩轩轩完成签到 ,获得积分10
52秒前
务实觅松完成签到 ,获得积分10
55秒前
57秒前
科研女仆完成签到 ,获得积分10
1分钟前
ago发布了新的文献求助10
1分钟前
闪闪鬼神完成签到,获得积分10
1分钟前
午盏发布了新的文献求助10
1分钟前
清心寡欲发布了新的文献求助10
1分钟前
夏至完成签到 ,获得积分10
1分钟前
1分钟前
渔火完成签到 ,获得积分10
1分钟前
干净南风发布了新的文献求助10
1分钟前
研友_8RyzBZ完成签到,获得积分10
1分钟前
干净南风完成签到,获得积分10
1分钟前
1分钟前
1分钟前
活泼的飞鸟完成签到,获得积分10
1分钟前
快乐二方完成签到 ,获得积分10
1分钟前
赘婿应助ago采纳,获得10
1分钟前
大个应助啊啊啊啊采纳,获得10
1分钟前
无畏完成签到 ,获得积分10
1分钟前
大布完成签到,获得积分10
1分钟前
1分钟前
明亮的代灵完成签到 ,获得积分10
1分钟前
1分钟前
yhgz完成签到,获得积分10
1分钟前
Virtual应助科研通管家采纳,获得20
1分钟前
ding应助平淡道天采纳,获得10
1分钟前
wanci应助星沐易采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581441
求助须知:如何正确求助?哪些是违规求助? 3999412
关于积分的说明 12381249
捐赠科研通 3674034
什么是DOI,文献DOI怎么找? 2024837
邀请新用户注册赠送积分活动 1058672
科研通“疑难数据库(出版商)”最低求助积分说明 945419