KI-MAG: A knowledge-infused abstractive question answering system in medical domain

计算机科学 正确性 一般化 人工智能 答疑 自然语言处理 背景(考古学) 领域(数学分析) 领域知识 发电机(电路理论) 程序设计语言 数学 数学分析 古生物学 功率(物理) 物理 量子力学 生物
作者
Aizan Zafar,Sovan Kumar Sahoo,Harsh Bhardawaj,Amitava Das,Asif Ekbal
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:571: 127141-127141 被引量:11
标识
DOI:10.1016/j.neucom.2023.127141
摘要

Abstractive question-answering (QA) has emerged as a prominent area in Natural Language Processing (NLP) due to its ability to produce concise and human-like responses, particularly with the advancement of Large Language Models. Despite its potential, abstractive QA suffers from challenges like the need for extensive training data and the generation of incorrect entities and out-of-context words in the responses. In safety-critical domains like medical and clinical settings, such issues are unacceptable and may compromise the accuracy and reliability of generated answers. We proposed KI-MAG (Knowledge-Infused Medical Abstractive Generator) model, a novel Knowledge-Infused Abstractive Question Answering System specifically designed for the medical domain. KI-MAG aims to address the aforementioned limitations and enhance the correctness of generated responses while mitigating data sparsity concerns. The KI-MAG system produces more precise and informative answers by incorporating relevant medical entities into the model’s generation process. Furthermore, we adopt a synthetic data generation approach using question-answer pairs to overcome the challenge of limited training data in the medical domain. These synthetic pairs augment the original dataset, resulting in better model generalization and improved performance. Our extensive experimental evaluations demonstrate the effectiveness of the KI-MAG system. Compared to traditional abstractive QA models, our approach exhibits a substantial increase of approximately 15% in Blue-1, Blue-2, Blue-3, and Blue-4 scores, indicating a remarkable improvement in answer accuracy and overall quality of responses. Overall, our Knowledge-Infused Abstractive Question Answering System in the Medical Domain (KI-MAG) presents a promising solution to enhance the performance and reliability of abstractive QA models in safety-critical medical applications where precision and correctness of answers are of utmost importance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伶俐惜萱发布了新的文献求助10
刚刚
活泼的飞鸟完成签到,获得积分0
刚刚
杨桃发布了新的文献求助30
2秒前
吴未完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
赫奇帕奇小麻瓜完成签到,获得积分20
6秒前
绝尘完成签到,获得积分10
7秒前
fengzi151发布了新的文献求助10
7秒前
9秒前
9秒前
情怀应助louxiaohan采纳,获得10
11秒前
jenningseastera应助LaTeXer采纳,获得10
11秒前
科研通AI5应助寒冷妙梦采纳,获得10
14秒前
14秒前
电击小子完成签到 ,获得积分10
14秒前
15秒前
JamesPei应助风趣的初阳采纳,获得30
15秒前
仁爱安筠完成签到,获得积分10
16秒前
打打应助阿九采纳,获得10
17秒前
17秒前
17秒前
彭于晏应助绝不内耗采纳,获得10
17秒前
白茶清欢无别事完成签到,获得积分20
17秒前
Sylvie发布了新的文献求助10
19秒前
19秒前
小欣发布了新的文献求助10
21秒前
yc发布了新的文献求助10
23秒前
23秒前
24秒前
24秒前
宁次发布了新的文献求助10
26秒前
26秒前
27秒前
squeak完成签到,获得积分10
27秒前
louxiaohan发布了新的文献求助10
28秒前
名字是乱码完成签到,获得积分20
28秒前
机智的慕儿完成签到,获得积分10
30秒前
小不发布了新的文献求助10
30秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799408
求助须知:如何正确求助?哪些是违规求助? 3345039
关于积分的说明 10322892
捐赠科研通 3061488
什么是DOI,文献DOI怎么找? 1680369
邀请新用户注册赠送积分活动 807049
科研通“疑难数据库(出版商)”最低求助积分说明 763462