KI-MAG: A knowledge-infused abstractive question answering system in medical domain

计算机科学 正确性 一般化 人工智能 答疑 自然语言处理 背景(考古学) 领域(数学分析) 领域知识 发电机(电路理论) 程序设计语言 数学 数学分析 古生物学 功率(物理) 物理 量子力学 生物
作者
Aizan Zafar,Sovan Kumar Sahoo,Harsh Bhardawaj,Amitava Das,Asif Ekbal
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:571: 127141-127141 被引量:11
标识
DOI:10.1016/j.neucom.2023.127141
摘要

Abstractive question-answering (QA) has emerged as a prominent area in Natural Language Processing (NLP) due to its ability to produce concise and human-like responses, particularly with the advancement of Large Language Models. Despite its potential, abstractive QA suffers from challenges like the need for extensive training data and the generation of incorrect entities and out-of-context words in the responses. In safety-critical domains like medical and clinical settings, such issues are unacceptable and may compromise the accuracy and reliability of generated answers. We proposed KI-MAG (Knowledge-Infused Medical Abstractive Generator) model, a novel Knowledge-Infused Abstractive Question Answering System specifically designed for the medical domain. KI-MAG aims to address the aforementioned limitations and enhance the correctness of generated responses while mitigating data sparsity concerns. The KI-MAG system produces more precise and informative answers by incorporating relevant medical entities into the model’s generation process. Furthermore, we adopt a synthetic data generation approach using question-answer pairs to overcome the challenge of limited training data in the medical domain. These synthetic pairs augment the original dataset, resulting in better model generalization and improved performance. Our extensive experimental evaluations demonstrate the effectiveness of the KI-MAG system. Compared to traditional abstractive QA models, our approach exhibits a substantial increase of approximately 15% in Blue-1, Blue-2, Blue-3, and Blue-4 scores, indicating a remarkable improvement in answer accuracy and overall quality of responses. Overall, our Knowledge-Infused Abstractive Question Answering System in the Medical Domain (KI-MAG) presents a promising solution to enhance the performance and reliability of abstractive QA models in safety-critical medical applications where precision and correctness of answers are of utmost importance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特老四关注了科研通微信公众号
刚刚
Flipped完成签到,获得积分10
1秒前
眯眯眼的以蕊完成签到,获得积分10
2秒前
拽根大恐龙完成签到,获得积分10
2秒前
圆彰七大完成签到 ,获得积分10
2秒前
玉米完成签到,获得积分10
2秒前
laliulai1完成签到,获得积分10
2秒前
4秒前
青年才俊完成签到,获得积分10
4秒前
褚香旋发布了新的文献求助20
4秒前
张一亦可完成签到,获得积分10
4秒前
ada完成签到,获得积分10
5秒前
5秒前
小宇宙完成签到,获得积分10
5秒前
吧唧一笑的go完成签到,获得积分10
6秒前
6秒前
滴滴嘟完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
山椒完成签到,获得积分20
7秒前
热心醉蝶完成签到,获得积分10
7秒前
24号甜冰茶完成签到,获得积分10
8秒前
英俊的铭应助hetao286采纳,获得10
8秒前
jlhu发布了新的文献求助10
9秒前
fanfan完成签到,获得积分10
9秒前
绿色心情完成签到 ,获得积分10
9秒前
波波发布了新的文献求助10
10秒前
酷酷小天鹅完成签到,获得积分10
10秒前
高挑的吐司完成签到,获得积分10
10秒前
vivvy完成签到,获得积分10
11秒前
11秒前
comma完成签到,获得积分10
12秒前
solitude完成签到,获得积分10
12秒前
Lillie完成签到,获得积分10
12秒前
12秒前
慕青应助急支糖浆采纳,获得10
12秒前
诸葛凤雏完成签到,获得积分10
12秒前
MaSaR完成签到,获得积分10
12秒前
欢喜的皮卡丘完成签到,获得积分10
13秒前
张露完成签到 ,获得积分10
13秒前
美好忆霜完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5067126
求助须知:如何正确求助?哪些是违规求助? 4288967
关于积分的说明 13361468
捐赠科研通 4108496
什么是DOI,文献DOI怎么找? 2249751
邀请新用户注册赠送积分活动 1255144
关于科研通互助平台的介绍 1187650