A Delayless Polyphase Implementation Method for Active Noise Control Systems

多相系统 噪音(视频) 计算机科学 控制(管理) 控制工程 控制理论(社会学) 电子工程 工程类 人工智能 图像(数学)
作者
Yongjie Zhuang,Yangfan Liu
标识
DOI:10.2139/ssrn.4720145
摘要

When implementing active noise control systems on signal processing hardware, the time delay introduced by electronic components (especially components requiring additional lowpass filters or introducing fixed-sample-size delays) may adversely affect the noise control performance. One common approach to reducing this delay is to use a high sampling rate, but this increases the computation significantly when implementing the ANC filters in real time. In the current work, a polyphase-structure-based filter design method is developed for active noise control systems that can reduce the computation load for real-time filter implementation but do not introduce an additional time delay. Although the computation reduction capability of a polyphase filter structure is well known for multi-rate systems, the traditional use of such multi-rate systems requires additional anti-aliasing and reconstruction filters which introduces an additional time delay. Thus, in delay-sensitive applications, such as active noise control, this method was previously applied only on the filter adaption phase, instead of directly on the real-time filtering process. In this article, a filter decomposition method using the minimum-phase technique is proposed to decompose an ANC filter into two multiplicative causal filters both of which have lowpass frequency response shapes at high frequencies such that the polyphase structure can be applied directly to the two multiplicative causal control filters without introducing additional anti-aliasing and reconstruction filters. Results show that, compared with various traditional low sampling rate implementations, the proposed method can significantly improve the noise control performance. Compared with the non-polyphase high-sampling rate method, the real-time computations that increase with the sampling rate are improved from quadratically to linearly.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任一完成签到 ,获得积分20
刚刚
上官若男应助iwonder采纳,获得10
刚刚
BINGBING发布了新的文献求助10
1秒前
SciGPT应助科研一路绿灯采纳,获得10
1秒前
vousme完成签到 ,获得积分10
1秒前
sh完成签到,获得积分10
2秒前
洺全完成签到,获得积分10
2秒前
wby0313发布了新的文献求助30
2秒前
sdl发布了新的文献求助10
3秒前
热心市民小红花应助wu61采纳,获得10
3秒前
英姑应助Melody采纳,获得10
4秒前
web完成签到,获得积分10
7秒前
领导范儿应助Xiaojie采纳,获得10
7秒前
8秒前
8秒前
yile完成签到,获得积分10
9秒前
洁净绝山发布了新的文献求助40
9秒前
许一完成签到,获得积分10
12秒前
12秒前
BINGBING完成签到,获得积分10
12秒前
xiong完成签到,获得积分10
13秒前
14秒前
传奇3应助凯瑟琳采纳,获得10
15秒前
15秒前
peekaboo发布了新的文献求助20
16秒前
南北完成签到,获得积分10
16秒前
16秒前
16秒前
xumou完成签到,获得积分10
17秒前
Foxjker完成签到 ,获得积分10
17秒前
18秒前
任志政完成签到 ,获得积分10
18秒前
hhj发布了新的文献求助10
18秒前
夜微醉完成签到,获得积分10
19秒前
Ava应助跳跃尔琴采纳,获得10
20秒前
20秒前
2561发布了新的文献求助10
20秒前
王家文完成签到,获得积分10
21秒前
LRRAM_809完成签到,获得积分10
21秒前
22秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841815
求助须知:如何正确求助?哪些是违规求助? 3383873
关于积分的说明 10531596
捐赠科研通 3103984
什么是DOI,文献DOI怎么找? 1709463
邀请新用户注册赠送积分活动 823263
科研通“疑难数据库(出版商)”最低求助积分说明 773868