A full‐probabilistic cloud analysis for structural seismic fragility via decoupled M‐PDEM

脆弱性 概率密度函数 结构工程 增量动力分析 概率逻辑 响应分析 蒙特卡罗方法 非线性系统 随机变量 算法的概率分析 结构体系 应用数学 工程类 计算机科学 数学 地震分析 物理 统计 热力学 量子力学
作者
Meng‐Ze Lyu,De‐Cheng Feng,Xu‐Yang Cao,Michael Beer
出处
期刊:Earthquake Engineering & Structural Dynamics [Wiley]
卷期号:53 (5): 1863-1881 被引量:11
标识
DOI:10.1002/eqe.4093
摘要

Abstract Performance‐based earthquake engineering (PBEE) is essential for ensuring engineering safety. Conducting seismic fragility analysis within this framework is imperative. Existing methods for seismic fragility analysis often rely heavily on double loop reanalysis and empirical data fitting, leading to challenges in obtaining high‐precision results with a limited number of representative structural analysis instances. In this context, a new methodology for seismic fragility based on a full‐probabilistic cloud analysis is proposed via the decoupled multi‐probability density evolution method (M‐PDEM). In the proposed method, the assumption of a log‐normal distribution is not required. According to the random event description of the principle of preservation of probability, the transient probability density functions (PDFs) of intensity measure (IM) and engineering demand parameter (EDP), as key response quantities of the seismic‐structural system, are governed by one‐dimensional Li‐Chen equations, where the physics‐driven forces are determined by representative analysis data of the stochastic dynamic system. By generating ground motions based on representative points of basic random variables and performing structural dynamic analysis, the decoupled M‐PDEM is employed to solve the one‐dimensional Li‐Chen equations. This yields the joint PDF of IM and EDP, as well as the conditional PDF of EDP given IM, resulting in seismic fragility analysis outcomes. The numerical implementation procedure is elaborated in detail, and validation is performed using a six‐story nonlinear reinforced concrete (RC) frame subjected to non‐stationary stochastic ground motions. Comparative analysis against Monte Carlo simulation (MCS) and traditional cloud analysis based on least squares regression (LSR) reveals that the proposed method achieves higher computational precision at comparable structural analysis costs. By directly solving the physics‐driven Li‐Chen equations, the method provides the full‐probabilistic joint information of IM and EDP required for cloud analysis, surpassing the accuracy achieved by traditional methods based on statistical moment fitting and empirical distribution assumptions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tomato完成签到,获得积分10
刚刚
称心的绿柏完成签到,获得积分10
刚刚
芋头完成签到,获得积分10
1秒前
余若翠发布了新的文献求助10
2秒前
聪明元蝶完成签到,获得积分10
2秒前
领导范儿应助Senna采纳,获得10
2秒前
2秒前
2秒前
3秒前
mumu完成签到,获得积分10
3秒前
111发布了新的文献求助10
3秒前
正直的半梅完成签到 ,获得积分10
4秒前
5秒前
GTthree完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
Hello应助tomato采纳,获得10
7秒前
史昊昊发布了新的文献求助10
8秒前
狗咚嘻完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
Alex完成签到,获得积分10
9秒前
xzh完成签到,获得积分10
10秒前
10秒前
柠檬加冰发布了新的文献求助10
11秒前
12秒前
轻语发布了新的文献求助10
12秒前
淡然冬灵应助Declan采纳,获得100
12秒前
GTthree完成签到,获得积分10
12秒前
酷波er应助DY采纳,获得10
13秒前
方百招发布了新的文献求助10
13秒前
白云发布了新的文献求助10
13秒前
小王小王发布了新的文献求助10
14秒前
烤肠发布了新的文献求助10
14秒前
NexusExplorer应助青石采纳,获得10
14秒前
16秒前
陈十三呀发布了新的文献求助10
16秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835165
求助须知:如何正确求助?哪些是违规求助? 3377669
关于积分的说明 10499742
捐赠科研通 3097244
什么是DOI,文献DOI怎么找? 1705614
邀请新用户注册赠送积分活动 820629
科研通“疑难数据库(出版商)”最低求助积分说明 772149