亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Evolutionary Game Theory-Based Cooperation Framework for Countering Privacy Inference Attacks

博弈论 计算机安全 计算机科学 推论 进化博弈论 互联网隐私 人工智能 数理经济学 经济
作者
Yuzi Yi,Nafei Zhu,Jingsha He,Anca Delia Jurcut,Xiangjun Ma,Yehong Luo
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (3): 4367-4384 被引量:2
标识
DOI:10.1109/tcss.2024.3359254
摘要

Privacy inference poses a significant threat to users of online social networks (OSNs). To deal with this issue, a number of privacy-enhancing technologies have been proposed with the goal of achieving a balance between the protection of privacy and the utility of data. Previous studies, however, failed to take into consideration the impact of the interdependency of privacy (IoP), which dictates that privacy decisions made by some users may affect the privacy of some other users. The implication of IoP is that too much privacy may be disclosed when multiple individuals share data with the same data accessor because privacy conflicts resulting from independent privacy decisions would make it possible for adversaries to infer the privacy of the target user. Ideally, cooperation that preserves privacy should allow OSN users to respect each other's privacy specifications so as to resolve such privacy conflicts caused by independent privacy decisions of individuals. To facilitate the design, we propose a privacy-preserving cooperation framework based on the evolutionary game theory to facilitate such cooperation. Based on the framework, the dynamics of user strategies regarding whether to participate in the cooperation are analyzed and an evolutionary stable state is derived to serve as the basis for incentivizing users to participate in cooperative privacy protection. Experiments based on real OSN data show that the proposed cooperation framework is effective in modeling the behaviors of users and that the proposed incentive allocation method can incentivize users to participate in the cooperation. The proposed cooperation framework can not only helps lower the threat to user privacy resulting from privacy inference by data accessors but also allows OSN service providers to design effective privacy protection policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ceeray23应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
wanci应助HighFeng_Lei采纳,获得10
14秒前
20秒前
HighFeng_Lei发布了新的文献求助10
23秒前
26秒前
荼蘼发布了新的文献求助10
34秒前
荼蘼完成签到,获得积分20
45秒前
51秒前
12A完成签到,获得积分10
55秒前
56秒前
1分钟前
Juniorrr发布了新的文献求助10
1分钟前
orixero应助害羞无春采纳,获得10
1分钟前
1分钟前
1分钟前
害羞无春发布了新的文献求助10
1分钟前
害羞无春完成签到,获得积分10
1分钟前
1分钟前
1分钟前
吃了吃了完成签到,获得积分10
2分钟前
2分钟前
彭于晏应助Juniorrr采纳,获得10
2分钟前
自觉的熊猫完成签到,获得积分10
2分钟前
2分钟前
moss完成签到 ,获得积分10
2分钟前
Orange应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
香蕉觅云应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
2分钟前
赘婿应助李幺幺采纳,获得10
2分钟前
2分钟前
鱿鱼的月亮完成签到 ,获得积分10
2分钟前
wjc0214完成签到,获得积分20
2分钟前
2分钟前
oleskarabach发布了新的文献求助10
2分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5198513
求助须知:如何正确求助?哪些是违规求助? 4379453
关于积分的说明 13638137
捐赠科研通 4235577
什么是DOI,文献DOI怎么找? 2323428
邀请新用户注册赠送积分活动 1321551
关于科研通互助平台的介绍 1272535