亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Robust and ultra-tough lignocellulosic organogel with zipper-like sliding noncovalent nanostructural design: Towards next-generation bio-derived flexible electronics

材料科学 韧性 极限抗拉强度 超分子化学 动态力学分析 纳米技术 聚合物 复合材料 化学 有机化学 分子
作者
Haonan Zhang,Yanchen Zhu,Tongtong Fu,Cheng Hao,Yang Huang,Hao Ren,Ning Yan,Huimin Zhai
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:485: 150105-150105 被引量:14
标识
DOI:10.1016/j.cej.2024.150105
摘要

Soft electronics have garnered significant interests owing to their distinctive qualities. However, their practical utilizations are still limited by their generally poor mechanical properties, environmental concerns, and incompatibility. Here, we present a unique hierarchical nanoarchitectural design of dynamic noncovalent supramolecular zipper to achieve synergistic enhancement of both mechanical strength and toughness in organogels. By building lignin-carbohydrate complexes nanoparticles (LCCNPs)-based sliding zippers within the interpenetrating polymer networks (IPN) formed by in-situ regenerated cellulose nanofibrils (CNFs) and polyvinyl alcohol (PVA) molecular chains, the lignocellulosic organogels demonstrated excellent mechanical properties, shape recovery performances, and strain-stiffening behaviors. The ultimate tensile strength increased by 11-fold, reaching 8.29 MPa, while the toughness also had an increase of 24-fold, reaching 23.8 MJ/m3 at the same time, comparing to those of the PVA hydrogel. These novel organogels also exhibited exceptional anti-freezing (<-150 °C), anti-dehydration, transparency, UV-shielding, and biodegradable properties. The assembled wearable sensor using the organogels were able to monitor human motion status and physiological signals with a tunable conductivity (up to 5.14 S/m), a high sensitivity (a maximum gauge factor of 5.62) and long cyclic stability (2000 cycles). This novel nano-structural design approach showcases a facile and versatile platform for constructing the next-generation high performance bio-based soft electronics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山东老铁完成签到,获得积分10
3秒前
浮游应助科研通管家采纳,获得10
4秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
YifanWang应助科研通管家采纳,获得10
5秒前
YifanWang应助科研通管家采纳,获得10
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
麻辣小龙虾完成签到,获得积分10
6秒前
7秒前
12秒前
Chat发布了新的文献求助10
17秒前
style完成签到,获得积分10
21秒前
黑木完成签到 ,获得积分10
23秒前
24秒前
24秒前
25秒前
27秒前
莫问今生完成签到,获得积分10
27秒前
烊驼发布了新的文献求助30
34秒前
34秒前
volunteer完成签到 ,获得积分10
34秒前
烊驼完成签到,获得积分10
44秒前
47秒前
CCS完成签到 ,获得积分10
47秒前
湘湘完成签到 ,获得积分10
49秒前
峰无坦途完成签到,获得积分10
49秒前
51秒前
yuqian发布了新的文献求助10
53秒前
56秒前
1分钟前
1分钟前
Lucas应助yuqian采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
殷勤的觅松完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482254
求助须知:如何正确求助?哪些是违规求助? 4583174
关于积分的说明 14388761
捐赠科研通 4512190
什么是DOI,文献DOI怎么找? 2472717
邀请新用户注册赠送积分活动 1458988
关于科研通互助平台的介绍 1432363