已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-Agent Deep Reinforcement Learning Framework for Renewable Energy-Aware Workflow Scheduling on Distributed Cloud Data Centers

计算机科学 云计算 强化学习 工作流程 分布式计算 调度(生产过程) 可再生能源 数据库 操作系统 人工智能 运营管理 电气工程 工程类 经济
作者
Amanda Jayanetti,Saman Halgamuge,Rajkumar Buyya
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (4): 604-615 被引量:45
标识
DOI:10.1109/tpds.2024.3360448
摘要

The ever-increasing demand for the cloud computing paradigm has resulted in the widespread deployment of multiple datacenters, the operations of which consume very high levels of energy. The carbon footprint resulting from these operations threatens environmental sustainability while the increased energy costs have a direct impact on the profitability of cloud providers. Using renewable energy sources to satisfy the energy demands of datacenters has emerged as a viable approach to overcome the aforementioned issues. The problem of scheduling workflows across multi-cloud environments powered through a combination of brown and green energy sources includes multiple levels of complexities. First, the general case of workflow scheduling in a distributed system itself is NP-hard. The need to schedule workflows across geo-distributed cloud datacenters adds a further layer of complexity atop the general problem. The problem becomes further challenging when the datacenters are powered through renewable sources which are inherently intermittent in nature. Consequently, traditional workflow scheduling algorithms and single-agent reinforcement learning algorithms are incapable of efficiently meeting the decentralized and adaptive control required for addressing these challenges. To this end, we have leveraged the recent advancements in the paradigm of MARL (Multi-Agent Reinforcement Learning) for designing and developing a multi-agent RL framework for optimizing the green energy utilization of workflow executions across multi-cloud environments. The results of extensive simulations demonstrate that the proposed approach outperforms the comparison algorithms with respect to minimizing energy consumption of workflow executions by 47% while also keeping the makespan of workflows in par with comparison algorithms. Furthermore, with the proposed optimizations, the multi-agent technique learnt 5 times faster than a generic multi-agent algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
潇洒的马里奥完成签到,获得积分10
5秒前
yangqi完成签到,获得积分10
6秒前
Shelby发布了新的文献求助10
7秒前
崔梦楠完成签到 ,获得积分10
7秒前
林北河马完成签到,获得积分20
7秒前
Taiga完成签到 ,获得积分10
8秒前
shentaii完成签到,获得积分10
8秒前
黄靓靓发布了新的文献求助10
8秒前
fnnnnn发布了新的文献求助10
8秒前
8秒前
半喇柯基完成签到 ,获得积分10
8秒前
jijiguo发布了新的文献求助10
11秒前
冷傲曼冬发布了新的文献求助30
14秒前
fanhuaxuejin完成签到 ,获得积分10
14秒前
14秒前
15秒前
独特的蛋挞完成签到,获得积分10
17秒前
彭于晏应助俏皮短靴采纳,获得30
19秒前
19秒前
20秒前
20秒前
qqq完成签到 ,获得积分10
21秒前
小坤不慌完成签到 ,获得积分10
21秒前
冷傲曼冬完成签到,获得积分20
24秒前
Wen完成签到 ,获得积分10
24秒前
文静涵梅发布了新的文献求助10
25秒前
mogugu完成签到,获得积分10
30秒前
JD完成签到 ,获得积分10
30秒前
自然的铅笔完成签到 ,获得积分10
31秒前
Miku完成签到,获得积分10
32秒前
林黛玉倒拔垂杨柳完成签到 ,获得积分10
34秒前
仁者无惧完成签到 ,获得积分10
35秒前
fnnnnn完成签到,获得积分10
36秒前
姆姆没买完成签到 ,获得积分10
36秒前
虚心的荧应助宝剑葫芦采纳,获得10
38秒前
40秒前
眯眯眼的黎昕完成签到 ,获得积分10
41秒前
42秒前
WEILAI完成签到 ,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301293
求助须知:如何正确求助?哪些是违规求助? 4448916
关于积分的说明 13847473
捐赠科研通 4334931
什么是DOI,文献DOI怎么找? 2379947
邀请新用户注册赠送积分活动 1374982
关于科研通互助平台的介绍 1340862