Removal of Ocular and Muscular Artifacts From Multi-Channel EEG Using Improved Spatial-Frequency Filtering

计算机科学 工件(错误) 脑电图 人工智能 模式识别(心理学) 盲信号分离 降噪 小波 频域 小波变换 语音识别 频道(广播) 计算机视觉 心理学 计算机网络 精神科
作者
Wuxiang Shi,Yurong Li,Nai‐Qing Cai,Chen Ru-kai,Wei Cao,Jixiang Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (6): 3466-3477 被引量:3
标识
DOI:10.1109/jbhi.2024.3378980
摘要

Over recent decades, electroencephalogram (EEG) has become an essential tool in the field of clinical analysis and neurological disease research. However, EEG recordings are notably vulnerable to artifacts during acquisition, especially in clinical settings, which can significantly impede the accurate interpretation of neuronal activity. Blind source separation is currently the most popular method for EEG denoising, but most of the sources it separates often contain both artifacts and brain activity, which may lead to substantial information loss if handled improperly. In this paper, we introduce a dual-threshold denoising method combining spatial filtering with frequency-domain filtering to automatically eliminate electrooculogram (EOG) and electromyogram (EMG) artifacts from multi-channel EEG. The proposed method employs a fusion of second-order blind identification (SOBI) and canonical correlation analysis (CCA) to enhance source separation quality, followed by adaptive threshold to localize the artifact sources, and strict fixed threshold to remove strong artifact sources. Stationary wavelet transform (SWT) is utilized to decompose the weak artifact sources, with subsequent adjustment of wavelet coefficients in respective frequency bands tailored to the distinct characteristics of each artifact. The results of synthetic and real datasets show that our proposed method maximally retains the time-domain and frequency-domain information in the EEG during denoising. Compared with existing techniques, the proposed method achieves better denoising performance, which establishes a reliable foundation for subsequent clinical analyses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分10
刚刚
Maxstein完成签到,获得积分10
刚刚
1秒前
SDNUDRUG发布了新的文献求助10
1秒前
anan应助zzz采纳,获得20
2秒前
3秒前
4秒前
4秒前
默默荔枝完成签到 ,获得积分10
4秒前
4秒前
大力发布了新的文献求助10
5秒前
bcc666发布了新的文献求助10
5秒前
5秒前
叶泠渊发布了新的文献求助10
5秒前
呆呆完成签到,获得积分10
5秒前
自由寄柔应助Makta采纳,获得10
5秒前
6秒前
小懒猪发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
liang完成签到,获得积分10
8秒前
Tugeouc完成签到,获得积分10
8秒前
王阿欣发布了新的文献求助10
8秒前
眼睛大安荷完成签到,获得积分10
8秒前
9秒前
sq关闭了sq文献求助
10秒前
俞杨锦完成签到,获得积分10
11秒前
11秒前
yrr发布了新的文献求助10
11秒前
NexusExplorer应助忧心的不言采纳,获得10
11秒前
hy完成签到,获得积分10
11秒前
完美的水杯完成签到 ,获得积分10
12秒前
12秒前
12秒前
浮游应助地学韦丰吉司长采纳,获得10
12秒前
i1发布了新的文献求助10
12秒前
qian发布了新的文献求助30
13秒前
尹兴亮完成签到,获得积分10
13秒前
晴天发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285299
求助须知:如何正确求助?哪些是违规求助? 4438487
关于积分的说明 13817325
捐赠科研通 4319766
什么是DOI,文献DOI怎么找? 2371149
邀请新用户注册赠送积分活动 1366693
关于科研通互助平台的介绍 1330152