A deep learning model for the localization and extraction of brain tumors from MR images using YOLOv7 and grab cut algorithm

人工智能 计算机科学 分割 支持向量机 磁共振成像 基本事实 算法 过程(计算) 深度学习 精确性和召回率 F1得分 脑瘤 模式识别(心理学) 放射科 医学 病理 操作系统
作者
Srigiri Krishnapriya,Yepuganti Karuna
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:14: 1347363-1347363 被引量:6
标识
DOI:10.3389/fonc.2024.1347363
摘要

Introduction Brain tumors are a common disease that affects millions of people worldwide. Considering the severity of brain tumors (BT), it is important to diagnose the disease in its early stages. With advancements in the diagnostic process, Magnetic Resonance Imaging (MRI) has been extensively used in disease detection. However, the accurate identification of BT is a complex task, and conventional techniques are not sufficiently robust to localize and extract tumors in MRI images. Therefore, in this study, we used a deep learning model combined with a segmentation algorithm to localize and extract tumors from MR images. Method This paper presents a Deep Learning (DL)-based You Look Only Once (YOLOv7) model in combination with the Grab Cut algorithm to extract the foreground of the tumor image to enhance the detection process. YOLOv7 is used to localize the tumor region, and the Grab Cut algorithm is used to extract the tumor from the localized region. Results The performance of the YOLOv7 model with and without the Grab Cut algorithm is evaluated. The results show that the proposed approach outperforms other techniques, such as hybrid CNN-SVM, YOLOv5, and YOLOv6, in terms of accuracy, precision, recall, specificity, and F1 score. Discussion Our results show that the proposed technique achieves a high dice score between tumor-extracted images and ground truth images. The findings show that the performance of the YOLOv7 model is improved by the inclusion of the Grab Cut algorithm compared to the performance of the model without the algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助lixm采纳,获得10
1秒前
1秒前
1秒前
Eliza发布了新的文献求助10
1秒前
2秒前
小巧念露发布了新的文献求助10
2秒前
宋宋完成签到 ,获得积分10
2秒前
2秒前
2秒前
慕青应助玉洁采纳,获得10
2秒前
xiu发布了新的文献求助10
2秒前
善学以致用应助crazyfish采纳,获得20
3秒前
Hollen完成签到 ,获得积分10
4秒前
共享精神应助小鱼采纳,获得30
4秒前
66完成签到,获得积分10
4秒前
XXXXL发布了新的文献求助10
5秒前
5秒前
SL发布了新的文献求助10
5秒前
5秒前
li发布了新的文献求助10
6秒前
sgyhbxf25完成签到,获得积分10
6秒前
哇samm发布了新的文献求助20
6秒前
嗯哼完成签到,获得积分10
6秒前
WN发布了新的文献求助10
7秒前
7秒前
orixero应助wendy采纳,获得30
7秒前
wen完成签到 ,获得积分10
7秒前
8秒前
iptwang发布了新的文献求助20
10秒前
酷波er应助于林渤采纳,获得10
11秒前
wanci应助现代的妍采纳,获得10
11秒前
无花果应助lilililili采纳,获得10
12秒前
青柳发布了新的文献求助10
12秒前
小巧念露完成签到,获得积分20
12秒前
吹梦西洲发布了新的文献求助30
12秒前
12秒前
大方青发布了新的文献求助10
13秒前
ccc完成签到,获得积分10
13秒前
知行合一发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5416040
求助须知:如何正确求助?哪些是违规求助? 4532443
关于积分的说明 14134586
捐赠科研通 4448188
什么是DOI,文献DOI怎么找? 2440180
邀请新用户注册赠送积分活动 1432075
关于科研通互助平台的介绍 1409601