Teaching Plan Generation and Evaluation With GPT-4: Unleashing the Potential of LLM in Instructional Design

计算机科学 平面图(考古学) 数学教育 教学设计 探索性研究 主题(文档) 优势和劣势 教学计划 管理科学 心理学 社会学 工程类 社会科学 图书馆学 考古 历史 社会心理学
作者
Bihao Hu,Longwei Zheng,Jiayi Zhu,L. Ding,Yilei Wang,Xiaoqing Gu
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:17: 1445-1459 被引量:57
标识
DOI:10.1109/tlt.2024.3384765
摘要

This study explores and analyzes the specific performance of Large Language Models (LLMs) in instructional design, aiming to unveil their potential strengths and possible weaknesses. Recently, the influence of LLMs has gradually increased in multiple fields, yet exploratory research on their application in education remains relatively scarce. In response to this situation, our research, grounded in Pedagogical Content Knowledge (PCK) theory, initially formulated an instructional design framework based on mathematical problem chains and corresponding prompt instructions. Subsequently, a comprehensive tool for assessing LLM's instructional design capabilities was developed. Utilizing GPT-4, a high school mathematics teaching plan dataset was generated. Finally, the performance of LLMs in instructional design was evaluated. The evaluation results revealed that the teaching plans generated by LLMs excel in setting instructional objectives, identifying teaching priorities, organizing problem chains and teaching activities, articulating subject content, and selecting methods and strategies. Particularly commendable performance was noted in the modules of statistics and functions. However, there is room for improvement in aspects related to mathematical culture and interdisciplinary assessment, as well as in the geometry and algebra modules. Lastly, this study proposes initiatives such as LLM Prompt-based teacher training and the integration of mathematics-focused LLMs. These suggestions aim to advance personalized instructional design and professional development of teachers, offering educators new insights into the in-depth application of LLMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七页禾发布了新的文献求助10
1秒前
3秒前
不要熬夜发布了新的文献求助10
4秒前
共享精神应助喜悦非笑采纳,获得10
6秒前
深情安青应助叶子采纳,获得10
10秒前
001完成签到 ,获得积分10
12秒前
skeletons发布了新的文献求助10
15秒前
李健应助夜行采纳,获得10
17秒前
单薄曼容发布了新的文献求助10
18秒前
19秒前
20秒前
jj完成签到,获得积分10
20秒前
医学小渣渣应助吴兰田采纳,获得20
24秒前
流觞俊秀完成签到 ,获得积分10
24秒前
simon发布了新的文献求助10
26秒前
不要熬夜完成签到,获得积分10
28秒前
小曹君完成签到,获得积分10
30秒前
simon完成签到,获得积分10
31秒前
李爱国应助静心采纳,获得10
31秒前
32秒前
云梦江海完成签到,获得积分10
33秒前
文章快快来应助simon采纳,获得10
33秒前
Owen应助zzznznnn采纳,获得10
39秒前
41秒前
42秒前
TUTU发布了新的文献求助10
49秒前
50秒前
53秒前
科研白菜白完成签到,获得积分10
55秒前
夜行发布了新的文献求助10
59秒前
崔军完成签到,获得积分10
1分钟前
lizishu应助simon采纳,获得10
1分钟前
ltt应助韩豆乐采纳,获得10
1分钟前
不笑的是_ay完成签到,获得积分10
1分钟前
无语的弱发布了新的文献求助50
1分钟前
爆米花应助坚定岂愈采纳,获得10
1分钟前
邱远18085172412完成签到 ,获得积分10
1分钟前
超级不惜发布了新的文献求助10
1分钟前
无花果应助阿金采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Jailing People With Mental Illness While Awaiting Commitment Hearings 500
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5858715
求助须知:如何正确求助?哪些是违规求助? 6341032
关于积分的说明 15638950
捐赠科研通 4972576
什么是DOI,文献DOI怎么找? 2682275
邀请新用户注册赠送积分活动 1625990
关于科研通互助平台的介绍 1583218