亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on intelligent fault diagnosis for railway point machines using deep reinforcement learning

强化学习 断层(地质) 点(几何) 钢筋 计算机科学 人工智能 工程类 结构工程 地质学 地震学 数学 几何学
作者
Shuai Xiao,Qingsheng Feng,Xue Li,Hong Li
出处
期刊:Transportation safety and environment [Oxford University Press]
卷期号:6 (4) 被引量:1
标识
DOI:10.1093/tse/tdae007
摘要

Abstract The advanced diagnosis of faults in railway point machines is crucial for ensuring the smooth operation of the turnout conversion system and the safe functioning of trains. Signal processing and deep learning-based methods have been extensively explored in the realm of fault diagnosis. While these approaches effectively extract fault features and facilitate the creation of end-to-end diagnostic models, they often demand considerable expert experience and manual intervention in feature selection, structural construction and parameter optimization of neural networks. This reliance on manual efforts can result in weak generalization performance and a lack of intelligence in the model. To address these challenges, this study introduces an intelligent fault diagnosis method based on deep reinforcement learning (DRL). Initially, a one-dimensional convolutional neural network agent is established, leveraging the specific characteristics of point machine fault data to automatically extract diverse features across multiple scales. Subsequently, deep Q network is incorporated as the central component of the diagnostic framework. The fault classification interactive environment is meticulously designed, and the agent training network is optimized. Through extensive interaction between the agent and the environment using fault data, satisfactory cumulative rewards and effective fault classification strategies are achieved. Experimental results demonstrate the proposed method's high efficacy, with a training accuracy of 98.9% and a commendable test accuracy of 98.41%. Notably, the utilization of DRL in addressing the fault diagnosis challenge for railway point machines enhances the intelligence of diagnostic process, particularly through its excellent independent exploration capability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
2秒前
唐泽雪穗应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
唐泽雪穗应助科研通管家采纳,获得10
4秒前
Alan弟弟发布了新的文献求助10
7秒前
40秒前
satsuki发布了新的文献求助10
45秒前
47秒前
敏敏9813完成签到,获得积分10
48秒前
星河发布了新的文献求助30
1分钟前
1分钟前
敏敏9813发布了新的文献求助10
1分钟前
1分钟前
阔达冰兰完成签到,获得积分20
1分钟前
阔达冰兰发布了新的文献求助10
1分钟前
玖玖完成签到 ,获得积分10
1分钟前
天天快乐应助satsuki采纳,获得10
1分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
唐泽雪穗应助科研通管家采纳,获得30
2分钟前
NexusExplorer应助星河采纳,获得10
2分钟前
调皮芫完成签到,获得积分20
2分钟前
dream完成签到 ,获得积分10
2分钟前
2分钟前
Nidehuogef发布了新的文献求助10
2分钟前
李爱国应助Nidehuogef采纳,获得10
2分钟前
hhdr完成签到 ,获得积分10
2分钟前
打打应助满锅采纳,获得10
3分钟前
英英的英完成签到 ,获得积分10
3分钟前
唐泽雪穗应助科研通管家采纳,获得10
4分钟前
唐泽雪穗应助科研通管家采纳,获得10
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
orixero应助科研通管家采纳,获得10
4分钟前
香蕉觅云应助科研通管家采纳,获得10
4分钟前
今后应助苹果诗珊采纳,获得10
4分钟前
4分钟前
满锅发布了新的文献求助10
4分钟前
科研通AI5应助ccccx采纳,获得10
4分钟前
naomic发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5077566
求助须知:如何正确求助?哪些是违规求助? 4296590
关于积分的说明 13387183
捐赠科研通 4119064
什么是DOI,文献DOI怎么找? 2255676
邀请新用户注册赠送积分活动 1260033
关于科研通互助平台的介绍 1193411