Simulation-based Optimization of Autonomous Driving Behaviors

复制 计算机科学 弹道 领域(数学) 驾驶模拟器 交通模拟 模拟 实时计算 工程类 运输工程 数学 统计 物理 交叉口(航空) 天文 纯数学
作者
Hashmatullah Sadid,Moeid Qurashi,Constantinos Antoniou
标识
DOI:10.1109/itsc55140.2022.9922604
摘要

Microscopic traffic models (MTMs) are widely used for assessing the impacts of autonomous and connected autonomous vehicles (AVs/CAVs). These models use car following (CF) and lane changing models to replicate the AV and CAV driving behaviors. Several studies attempt to replicate the accurate configuration of these behaviors (especially CF behavior) with many state-of-the-art modeling methods. However, they need to define certain parameters either based on assumptions or estimation by trajectory data from the limited field experiment of AVs and CAVs, and the impacts prediction accuracy depends on the definition of these parameters. For human-driven vehicles, these parameters mimic human drivers, whereas, for AVs and CAVs, most of these parameters could be controlled by an agent (AV and CAV). Therefore, it is possible to train AVs and CAVs to behave in a way that could potentially enhance their related impacts, e.g., traffic efficiency, emissions, and safety. Thus, this paper proposes an optimization framework that tends to find sets of optimized driving parameters for AVs and CAVs under different varying scenarios to achieve pre-defined policy targets (e.g., reducing travel time, number of conflicts). The proposed framework comprises an optimization module and a simulation environment. The differential evolution (DE) method is used within the optimization module to find the optimal values of the CF parameters. The simulation environment is a SUMO-based platform where several simulations are run under certain scenario conditions. An experimental setup is designed to apply the proposed framework under different scenarios of mixed traffic and demand situations. The findings of this study reveal that safety could be potentially improved by optimized values of CF model parameters. For each policy, where higher weight is allocated to safety, generated optimized parameters significantly improve safety as well as efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
玺烊烊完成签到 ,获得积分20
1秒前
森森完成签到,获得积分10
2秒前
森sen完成签到 ,获得积分10
2秒前
瑜凡发布了新的文献求助30
3秒前
SciGPT应助矮小的猕猴桃采纳,获得10
3秒前
nsc发布了新的文献求助10
4秒前
4秒前
星辰大海应助古月采纳,获得10
4秒前
秦博阳发布了新的文献求助10
7秒前
7秒前
7秒前
节能减排发布了新的文献求助10
7秒前
嘟嘟完成签到 ,获得积分10
10秒前
10秒前
上官若男应助安静的香菱采纳,获得10
13秒前
xmz应助傲娇松鼠采纳,获得10
13秒前
专注绿真完成签到,获得积分10
13秒前
七七发布了新的文献求助10
13秒前
14秒前
qizhixu发布了新的文献求助10
14秒前
九月初五完成签到,获得积分10
15秒前
16秒前
17秒前
18166992885完成签到 ,获得积分10
18秒前
小马甲应助zxb采纳,获得10
19秒前
赘婿应助Happy采纳,获得10
19秒前
19秒前
21秒前
我是老大应助感动的山槐采纳,获得10
22秒前
LMZ发布了新的文献求助10
22秒前
smallnaodai完成签到,获得积分20
22秒前
诚心八宝粥完成签到,获得积分10
22秒前
所所应助aganer采纳,获得10
23秒前
24秒前
科研通AI5应助玺烊烊采纳,获得30
26秒前
28秒前
28秒前
yyds发布了新的文献求助10
28秒前
zxb完成签到,获得积分10
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794440
求助须知:如何正确求助?哪些是违规求助? 3339328
关于积分的说明 10295355
捐赠科研通 3055891
什么是DOI,文献DOI怎么找? 1676876
邀请新用户注册赠送积分活动 804829
科研通“疑难数据库(出版商)”最低求助积分说明 762149