Risk assessment of forest landscape degradation using Bayesian network modeling in the Miyun Reservoir catchment (China) with emphasis on the Beijing–Tianjin sandstorm source control program

北京 环境科学 流域 土地退化 环境资源管理 中国 优势(遗传学) 土地利用 地理 环境保护 水文学(农业) 水资源管理 生态学 地图学 考古 化学 岩土工程 工程类 基因 生物 生物化学
作者
Hao Li,Xiao Zhang,Yan Zhang,Xiaohui Yang,Kebin Zhang
出处
期刊:Land Degradation & Development [Wiley]
卷期号:29 (11): 3876-3885 被引量:17
标识
DOI:10.1002/ldr.3133
摘要

Abstract As the local strategic surface water source for Beijing City, the Miyun Reservoir catchment is suffering from the challenges of forest landscape degradation (FLD) under various natural and anthropogenic disturbances. This study developed a cause–effect Bayesian network model, consisting of three tiers of nodes, site indicators, external disturbance, and the outcome of FLD, to perform a regional ecological risk assessment to better understand the FLD risks (1998–2013) in the catchment. The effects of the Beijing–Tianjin sandstorm source control (BTSSC) Phase I program, a typical forest landscape restoration program, on the FLD were further examined. Overall, the higher level of either current occurrence or risk probability for FLD suggests the urgency of the following restoration efforts. The dominance of soil erosion for FLD indicates that soil erosion control should be a priority in the following Phase II program. Meanwhile, the uneven spatial distribution of high‐risk areas suggests that the following efforts should be focused within the upstream Hebei Province. In addition, based on the comparison of site indicators between different risk areas, the study concluded that community livelihood activities and land degradation due to climate change have been the other two dominant driving forces contributing to FLD. Furthermore, the study found that the forest landscape has not been restored into the best state by the BTSSC program due to the multiple and complex challenges. Thus, the technical concept of nature‐based solutions, including close‐to‐nature forest management technology and a comprehensive community‐involvement governance model, was proposed for the following Phase II program.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
富婆莱莱发布了新的文献求助10
刚刚
李健应助雪糕采纳,获得10
1秒前
冰魂应助111采纳,获得10
2秒前
江柚白发布了新的文献求助10
2秒前
铁甲小宝完成签到,获得积分10
2秒前
小鱼干发布了新的文献求助10
3秒前
程锦发布了新的文献求助10
3秒前
luluyu完成签到,获得积分10
3秒前
科研通AI5应助内向绿竹采纳,获得10
3秒前
鸢尾发布了新的文献求助20
3秒前
3秒前
4秒前
bfr完成签到,获得积分10
5秒前
你终硕完成签到,获得积分10
5秒前
笑点低薯片完成签到,获得积分10
6秒前
Jouleken完成签到,获得积分10
6秒前
TCR完成签到,获得积分10
6秒前
香蕉觅云应助小田采纳,获得10
6秒前
彭于彦祖应助Doinb采纳,获得10
7秒前
zzz6286发布了新的文献求助10
7秒前
张丫丫发布了新的文献求助10
8秒前
Ilan完成签到,获得积分10
8秒前
脑洞疼应助雪白妙之采纳,获得10
9秒前
Orange应助fangyuan采纳,获得10
10秒前
10秒前
善学以致用应助不晚采纳,获得10
12秒前
12秒前
13秒前
情怀应助zm采纳,获得10
13秒前
江柚白完成签到,获得积分10
13秒前
14秒前
余小胖发布了新的文献求助10
14秒前
乐乐应助富婆莱莱采纳,获得10
14秒前
斯文的芹菜完成签到 ,获得积分10
14秒前
15秒前
程锦完成签到,获得积分10
15秒前
李爱国应助大炮采纳,获得10
16秒前
水星完成签到,获得积分10
16秒前
Maestro_S应助wxl19862273961采纳,获得10
17秒前
冰魂应助wxl19862273961采纳,获得10
17秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808716
求助须知:如何正确求助?哪些是违规求助? 3353476
关于积分的说明 10365281
捐赠科研通 3069664
什么是DOI,文献DOI怎么找? 1685735
邀请新用户注册赠送积分活动 810675
科研通“疑难数据库(出版商)”最低求助积分说明 766286