材料科学
太阳能电池
光学
硅
晶体硅
光电子学
平面的
折射率
计算机科学
物理
计算机图形学(图像)
作者
Laura Stevens,Nico Tucher,Oliver Höhn,Hubert Hauser,Claas Müller,Benedikt Bläsi
出处
期刊:Optics Express
[Optica Publishing Group]
日期:2019-04-04
卷期号:27 (8): A524-A524
被引量:7
摘要
Reflectance, reduction, and light trapping enhancement are essential to maximize the absorption of silicon solar cells.The industrial state of the art method to improve the solar cell optics is wet chemical texturization of the front surface in combination with the deposition of antireflection coatings.This work analyzes an alternative route, namely a TiO 2 pillar structure on the front side of a planar silicon solar cell encapsulated in ethylene vinyl acetate (EVA) and glass.It focuses on parameter variations of the structured TiO 2 layer while taking the module encapsulation into account.It is shown that internal reflections at the front interface of the module play a crucial role for the structure design.This leads to optimized structures working in a different optical regime.While state of the art structures optimized for a half infinite encapsulation act as effective media, structures optimized for the full module show an improved performance by making use of diffractive effects.It could be shown that weighted reflectance of 4.7% can be reached for a solar module with TiO 2 pillar structure on top of the silicon surface compared to 5.5% for a two-layer ARC with a TiO 2 bottom layer and 2.3% for an isotexture, which is the state of the art structure for multicrystalline silicon cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI