可观测性
机器人
度量(数据仓库)
校准
噪音(视频)
机器人校准
职位(财务)
控制理论(社会学)
观测误差
平面的
计算机科学
集合(抽象数据类型)
人工智能
数学
机器人控制
移动机器人
统计
控制(管理)
计算机图形学(图像)
财务
数据库
应用数学
程序设计语言
经济
图像(数学)
作者
Jin-Hwan Borm,Chia-Hsiang Meng
标识
DOI:10.1177/027836499101000106
摘要
The selection of measurement configurations in robot cali bration is investigated. The goal is to select a set of robot measurement configurations that will yield maximum ob servability of the error parameters in a defined position error model so that the effect of noise in parameter estimation can be minimized. The noise considered in this paper includes both measurement and modeling errors. An observability measure is used as a criterion for selecting measurement configurations for calibration. Experimental studies are per formed to demonstrate the importance of observability to parameter estimation and to verify its implications in robot calibration. Based on the defined observability measure, the optimal measurement configurations for robot calibration are determined for general open-loop planar mechanism and PUMA type robots.
科研通智能强力驱动
Strongly Powered by AbleSci AI