匹配追踪
限制等距性
压缩传感
噪音(视频)
信号重构
贪婪算法
算法
计算机科学
基本追求
信号(编程语言)
高斯噪声
等距(黎曼几何)
有界函数
数学
高斯分布
噪声测量
财产(哲学)
模式识别(心理学)
人工智能
信号处理
降噪
图像(数学)
电信
物理
数学分析
哲学
量子力学
认识论
程序设计语言
纯数学
雷达
作者
Rui Wu,Wei Huang,Di-Rong Chen
标识
DOI:10.1109/lsp.2012.2233734
摘要
Orthogonal matching pursuit (OMP) algorithm is a classical greedy algorithm in Compressed Sensing. In this letter, we study the performance of OMP in recovering the support of a sparse signal from a few noisy linear measurements. We consider two types of bounded noise and our analysis is in the framework of restricted isometry property (RIP). It is shown that under some conditions on RIP and the minimum magnitude of the nonzero elements of the sparse signal, OMP with proper stopping rules can recover the support of the signal exactly from the noisy observation. We also discuss the case of Gaussian noise. Our conditions on RIP improve some existing results.
科研通智能强力驱动
Strongly Powered by AbleSci AI