A polymer of caffeyl alcohol in plant seeds

松柏醇 木质素 单甘醇 苯丙素 化学 聚合 聚合物 细胞壁 有机化学 生物合成 生物化学
作者
Fang Chen,Yuki Tobimatsu,Daphna Havkin‐Frenkel,Richard A. Dixon,John Ralph
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:109 (5): 1772-1777 被引量:307
标识
DOI:10.1073/pnas.1120992109
摘要

Lignins are complex phenylpropanoid polymers mostly associated with plant secondary cell walls. Lignins arise primarily via oxidative polymerization of the three monolignols, p -coumaryl, coniferyl, and sinapyl alcohols. Of the two hydroxycinnamyl alcohols that represent incompletely methylated biosynthetic products (and are not usually considered to be monolignols), 5-hydroxyconiferyl alcohol is now well established as incorporating into angiosperm lignins, but incorporation of caffeyl alcohol has not been shown. We report here the presence of a homopolymer of caffeyl alcohol in the seed coats of both monocot and dicot plants. This polymer (C-lignin) is deposited to high concentrations in the seed coat during the early stages of seed development in the vanilla orchid ( Vanilla planifolia ), and in several members of the Cactaceae. The lignin in other parts of the Vanilla plant is conventionally biosynthesized from coniferyl and sinapyl alcohols. Some species of cacti contain only C-lignin in their seeds, whereas others contain only classical guaiacyl/syringyl lignin (derived from coniferyl and sinapyl alcohols). NMR spectroscopic analysis revealed that the Vanilla seed-coat polymer was massively comprised of benzodioxane units and was structurally similar to the polymer synthesized in vitro by peroxidase-catalyzed polymerization of caffeyl alcohol. CD spectroscopy did not detect any optical activity in the seed polymer. These data support the contention that the C-lignin polymer is produced in vivo via combinatorial oxidative radical coupling that is under simple chemical control, a mechanism analogous to that theorized for classical lignin biosynthesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋雁风完成签到,获得积分10
刚刚
孙杰发布了新的文献求助10
1秒前
Yacoob完成签到,获得积分10
2秒前
2秒前
2秒前
ZoeyD完成签到 ,获得积分10
3秒前
5秒前
drzz完成签到,获得积分10
6秒前
紧张的以旋完成签到,获得积分10
6秒前
7秒前
科目三应助Yacoob采纳,获得30
7秒前
warmen发布了新的文献求助10
7秒前
7秒前
小白发布了新的文献求助30
8秒前
英俊的铭应助花里尘采纳,获得10
13秒前
JamesPei应助李星星采纳,获得10
14秒前
qianqian发布了新的文献求助20
14秒前
14秒前
小白关注了科研通微信公众号
15秒前
香蕉发布了新的文献求助20
16秒前
17秒前
dongqing12311发布了新的文献求助10
17秒前
酷波er应助科研小锄头采纳,获得30
18秒前
Nicole完成签到 ,获得积分10
19秒前
ncxxxxx发布了新的文献求助10
19秒前
20秒前
李蝉羽应助lyn_zhou采纳,获得20
20秒前
21秒前
悲凉的半梦完成签到,获得积分10
22秒前
carinakyt发布了新的文献求助10
22秒前
qianqian完成签到,获得积分10
22秒前
科研通AI2S应助ncxxxxx采纳,获得10
23秒前
核桃应助dmm采纳,获得10
23秒前
24秒前
徽影发布了新的文献求助10
25秒前
25秒前
英俊的铭应助李星星采纳,获得10
27秒前
29秒前
Hello应助甘乐采纳,获得10
31秒前
司徒沛蓝发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4406962
求助须知:如何正确求助?哪些是违规求助? 3892083
关于积分的说明 12111654
捐赠科研通 3537028
什么是DOI,文献DOI怎么找? 1940846
邀请新用户注册赠送积分活动 981611
科研通“疑难数据库(出版商)”最低求助积分说明 878106