强直性营养不良
生物
体细胞
遗传学
三核苷酸重复扩增
单倍率不足
疾病
基因组不稳定性
发病年龄
等位基因
基因型
表型
微卫星不稳定性
人口
基因
内科学
医学
DNA损伤
微卫星
DNA
环境卫生
作者
Fernando Morales,Jillian M. Couto,Catherine F. Higham,Grant Hogg,Patricia Cuenca,Claudia Braida,Richard H. Wilson,Berit Adam,Gerardo Del Valle,Roberto Brian,Mauricio Sittenfeld,Tetsuo Ashizawa,Alison Wilcox,D.E. Wilcox,Darren G. Monckton
摘要
Deciphering the contribution of genetic instability in somatic cells is critical to our understanding of many human disorders. Myotonic dystrophy type 1 (DM1) is one such disorder that is caused by the expansion of a CTG repeat that shows extremely high levels of somatic instability. This somatic instability has compromised attempts to measure intergenerational repeat dynamics and infer genotype–phenotype relationships. Using single-molecule PCR, we have characterized more than 17 000 de novo somatic mutations from a large cohort of DM1 patients. These data reveal that the estimated progenitor allele length is the major modifier of age of onset. We find no evidence for a threshold above which repeat length does not contribute toward age at onset, suggesting pathogenesis is not constrained to a simple molecular switch such as nuclear retention of the DMPK transcript or haploinsufficiency for DMPK and/or SIX5. Importantly, we also show that age at onset is further modified by the level of somatic instability; patients in whom the repeat expands more rapidly, develop the symptoms earlier. These data establish a primary role for somatic instability in DM1 severity, further highlighting it as a therapeutic target. In addition, we show that the level of instability is highly heritable, implying a role for individual-specific trans-acting genetic modifiers. Identifying these trans-acting genetic modifiers will facilitate the formulation of novel therapies that curtail the accumulation of somatic expansions and may provide clues to the role these factors play in the development of cancer, aging and inherited disease in the general population.
科研通智能强力驱动
Strongly Powered by AbleSci AI