数学
孤子
共振(粒子物理)
空格(标点符号)
维数(图论)
数学分析
一维空间
边值问题
边界(拓扑)
数学物理
领域(数学分析)
物理
量子力学
非线性系统
纯数学
语言学
哲学
作者
Franklin Lambert,Micheline Musette,E Kesteloot
标识
DOI:10.1088/0266-5611/3/2/010
摘要
Resonant multisoliton interactions in one space dimension, involving a resonance triad and an arbitrary number N of solitary waves are discussed for the good Boussinesq (GB) equation. It is shown that any of the special (regular) N-soliton solutions, which are obtained at the boundary of the regularity domain, describe one of the four basic processes (related by time reversal and/or space reversal) in the presence of (N-2) (or (N-3)) 'spectator' solitons. In contrast with the two-dimensional case (KP equation), the GB resonant vertices cannot include more than three solitary waves.
科研通智能强力驱动
Strongly Powered by AbleSci AI