High-resolution radar road segmentation using weakly supervised learning

分割 深度学习 雷达 实时计算 计算机科学 模式 人工智能 卷积神经网络 计算机视觉 电信 社会科学 社会学
作者
Itai Orr,Moshik Cohen,Zeev Zalevsky
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:3 (3): 239-246 被引量:27
标识
DOI:10.1038/s42256-020-00288-6
摘要

Autonomous driving has recently gained lots of attention due to its disruptive potential and impact on the global economy; however, these high expectations are hindered by strict safety requirements for redundant sensing modalities that are each able to independently perform complex tasks to ensure reliable operation. At the core of an autonomous driving algorithmic stack is road segmentation, which is the basis for numerous planning and decision-making algorithms. Radar-based methods fail in many driving scenarios, mainly as various common road delimiters barely reflect radar signals, coupled with a lack of analytical models for road delimiters and the inherit limitations in radar angular resolution. Our approach is based on radar data in the form of a two-dimensional complex range-Doppler array as input into a deep neural network (DNN) that is trained to semantically segment the drivable area using weak supervision from a camera. Furthermore, guided back propagation was utilized to analyse radar data and design a novel perception filter. Our approach creates the ability to perform road segmentation in common driving scenarios based solely on radar data and we propose to utilize this method as an enabler for redundant sensing modalities for autonomous driving. Self-driving vehicles must reliably detect the drivable area in front of them in any weather condition. An actively developed sensor approach is camera-based road segmentation, but it is limited by the visible spectrum. Radar-based approaches are a promising alternative and a new method extracts the drivable area from raw radar data by training a deep neural network using paired camera data, which can be labelled automatically using pretrained computer vision models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上小土豆完成签到 ,获得积分10
刚刚
虹归于叶完成签到 ,获得积分10
4秒前
kanong完成签到,获得积分0
8秒前
开拖拉机的医学僧完成签到 ,获得积分10
12秒前
白凌风完成签到 ,获得积分10
12秒前
Johnpick应助微笑枫叶采纳,获得10
18秒前
gsji完成签到,获得积分10
22秒前
24秒前
满意代萱完成签到 ,获得积分10
25秒前
28秒前
符从丹完成签到,获得积分10
29秒前
ygr完成签到,获得积分0
31秒前
乐悠悠完成签到 ,获得积分10
31秒前
科研小虫发布了新的文献求助10
33秒前
John完成签到 ,获得积分10
38秒前
mark33442完成签到,获得积分10
48秒前
48秒前
符从丹发布了新的文献求助10
49秒前
乔木木完成签到,获得积分10
1分钟前
HoHo完成签到 ,获得积分10
1分钟前
沈惠映完成签到 ,获得积分10
1分钟前
TY完成签到 ,获得积分10
1分钟前
无为完成签到 ,获得积分10
1分钟前
魔幻的妖丽完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
热心雪一完成签到 ,获得积分10
1分钟前
1分钟前
英俊的铭应助ma采纳,获得10
1分钟前
changfox完成签到,获得积分10
1分钟前
1分钟前
1分钟前
ma发布了新的文献求助10
1分钟前
倩倩完成签到 ,获得积分10
1分钟前
科研佟完成签到 ,获得积分10
1分钟前
1分钟前
一独白完成签到,获得积分10
1分钟前
科研小虫完成签到,获得积分10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833913
求助须知:如何正确求助?哪些是违规求助? 3376330
关于积分的说明 10492632
捐赠科研通 3095861
什么是DOI,文献DOI怎么找? 1704748
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859