Artificial Intelligence Aids Cardiac Image Quality Assessment for Improving Precision in Strain Measurements

医学 可靠性(半导体) 乳腺癌 计算机科学 特征(语言学) 拉伤 质量(理念) 图像质量 置信区间 计算机视觉 医学物理学 人工智能 心脏病学 图像处理 机器学习 机器视觉 生物医学工程
作者
Kuan-Chih Huang,Chiun-Sheng Huang,Mao-Yuan M. Su,Chung-Lieh Hung,Yi-Chin Ethan Tu,Lung-Chun Lin,Juey-Jen Hwang
出处
期刊:Jacc-cardiovascular Imaging [Elsevier BV]
卷期号:14 (2): 335-345 被引量:8
标识
DOI:10.1016/j.jcmg.2020.08.034
摘要

The aim of this study was to develop an artificial intelligence tool to assess echocardiographic image quality objectively. Left ventricular global longitudinal strain (LVGLS) has recently been used to monitor cancer therapeutics−related cardiac dysfunction (CTRCD) but image quality limits its reliability. A DenseNet-121 convolutional neural network was developed for view identification from an athlete’s echocardiographic dataset. To prove the concept that classification confidence (CC) can serve as a quality marker, values of longitudinal strain derived from feature tracking of cardiac magnetic resonance (CMR) imaging and strain analysis of echocardiography were compared. The CC was then applied to patients with breast cancer free from CTRCD to investigate the effects of image quality on the reliability of strain analysis. CC of the apical 4-chamber view (A4C) was significantly correlated with the endocardial border delineation index. CC of A4C >900 significantly predicted a <15% relative difference in longitudinal strain between CMR feature tracking and automated echocardiographic analysis. Echocardiographic studies (n =752) of 102 patients with breast cancer without CTRCD were investigated. The strain analysis showed higher parallel forms, inter-rater, and test-retest reliabilities in patients with CC of A4C >900. During sequential comparisons of automated LVGLS in individual patients, those with CC of A4C >900 had a lower false positive detection rate of CTRCD. CC of A4C was associated with the reliability of automated LVGLS and could also potentially be used as a filter to select comparable images from sequential echocardiographic studies in individual patients and reduce the false positive detection rate of CTRCD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
坚定珍发布了新的文献求助30
4秒前
安静发布了新的文献求助10
4秒前
cv发布了新的文献求助10
4秒前
monere发布了新的文献求助10
8秒前
9秒前
老迟到的芹菜完成签到,获得积分10
9秒前
10秒前
He完成签到,获得积分20
11秒前
Ys驳回了乐乐应助
14秒前
啊咧咧完成签到 ,获得积分10
14秒前
852应助木目耶耶耶采纳,获得10
16秒前
JamesPei应助小黑采纳,获得10
16秒前
福明明发布了新的文献求助10
16秒前
siyuan完成签到,获得积分10
16秒前
胡萝卜发布了新的文献求助10
17秒前
蝈蝈蝈完成签到 ,获得积分10
17秒前
豆浆油条完成签到 ,获得积分10
17秒前
17秒前
19秒前
汉堡包应助monere采纳,获得10
19秒前
酷波er应助材化小将军采纳,获得10
20秒前
21秒前
mhc完成签到,获得积分20
22秒前
panpan完成签到,获得积分10
23秒前
tthxq发布了新的文献求助10
26秒前
26秒前
28秒前
香蕉觅云应助LisaZhuo采纳,获得10
28秒前
科研通AI5应助李海洋采纳,获得10
30秒前
31秒前
所所应助知性的真采纳,获得10
33秒前
吴未完成签到,获得积分10
34秒前
小黑发布了新的文献求助10
34秒前
36秒前
Lee完成签到,获得积分10
38秒前
38秒前
财来完成签到 ,获得积分10
39秒前
39秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790999
求助须知:如何正确求助?哪些是违规求助? 3335765
关于积分的说明 10276539
捐赠科研通 3052313
什么是DOI,文献DOI怎么找? 1675079
邀请新用户注册赠送积分活动 803082
科研通“疑难数据库(出版商)”最低求助积分说明 761056