Prediction by Fuzzy Clustering and KNN on Validation Data With Parallel Ensemble of Interpretable TSK Fuzzy Classifiers

质心 聚类分析 计算机科学 人工智能 模糊逻辑 杠杆(统计) 分类器(UML) 数据挖掘 模式识别(心理学) 模糊聚类 k-最近邻算法 机器学习
作者
Xiongtao Zhang,Yusuke Nojima,Hisao Ishibuchi,Wenjun Hu,Shitong Wang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (1): 400-414 被引量:13
标识
DOI:10.1109/tsmc.2020.2999813
摘要

For many application scenarios where raw and even multidomain training data can be easily collected, and at the same time, validation data (as ground-truth data) are available, it becomes naturally desirable for us to perform an enhanced classification/prediction on only validation data with the appropriate leverage of training data. In this article, a novel ensemble framework EP-TSK-FK of Takagi–Sugeno–Kang (TSK) fuzzy subclassifiers, is proposed to achieve the following distinctive characteristics: 1) each interpretable TSK fuzzy subclassifier on each training subset can be quickly built in parallel such that its outputs provide the values of the corresponding augmented features of the original validation data space; 2) as a novel ensemble method of fuzzy subclassifiers, EP-TSK-FK trains all the interpretable TSK fuzzy subclassifiers only once and does not explicitly reuse them while predicting a testing sample, which thereby reduces the computational complexity of the ensemble process for prediction; 3) after running the proposed iterative fuzzy c-means clustering algorithm iterative fuzzy C-means clustering (IFCM) on the augmented validation data to obtain the representative centroids, the fast classification/prediction of EP-TSK-FK on the testing samples is realized by using the $k$ -nearest neighbor (KNN) method on the representative centroids with the original features; and 4) enhanced classification performance by the IFCM & KNN method is theoretically revealed, and the experimental results on the benchmarking datasets indicate the effectiveness of EP-TSK-FK and its parallel learning method in the sense of enhanced classification performance, running time, and interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
1秒前
研友_LOoomL发布了新的文献求助10
2秒前
陶醉如柏发布了新的文献求助200
2秒前
小太阳红红火火完成签到,获得积分10
2秒前
烙饼完成签到 ,获得积分10
3秒前
3秒前
xinL应助小天狼星采纳,获得10
3秒前
大知闲闲完成签到 ,获得积分10
3秒前
3秒前
令狐冲完成签到,获得积分0
4秒前
4秒前
细致且入微完成签到,获得积分10
4秒前
Jane发布了新的文献求助60
5秒前
5秒前
领导范儿应助Orochimaru采纳,获得10
6秒前
hkh完成签到,获得积分10
6秒前
6秒前
朴素的清发布了新的文献求助10
7秒前
shrimp5215完成签到,获得积分10
7秒前
flipped完成签到,获得积分10
7秒前
迅速醉冬完成签到,获得积分10
7秒前
纯真的冰蓝完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助50
8秒前
死神发布了新的文献求助10
8秒前
鲤鱼完成签到,获得积分10
9秒前
驴小兔子完成签到,获得积分10
9秒前
learnerZ_2023完成签到,获得积分10
9秒前
Ting完成签到,获得积分10
9秒前
fannyeast完成签到,获得积分10
9秒前
Wolfe完成签到,获得积分10
9秒前
LX完成签到 ,获得积分10
9秒前
张兔兔完成签到,获得积分10
9秒前
整齐豆芽完成签到 ,获得积分10
10秒前
高高的远山完成签到,获得积分10
10秒前
方正发布了新的文献求助10
10秒前
10秒前
11秒前
闵夏完成签到,获得积分10
11秒前
11秒前
幼儿园老大完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5079983
求助须知:如何正确求助?哪些是违规求助? 4298027
关于积分的说明 13389776
捐赠科研通 4121516
什么是DOI,文献DOI怎么找? 2257145
邀请新用户注册赠送积分活动 1261455
关于科研通互助平台的介绍 1195563