估计员
文件夹
计量经济学
推论
分类
非参数统计
人气
经济
统计推断
估计
计算机科学
数学
统计
金融经济学
算法
人工智能
社会心理学
管理
心理学
作者
Matias D. Cattaneo,Richard K. Crump,Max H. Farrell,Ernst Schaumburg
摘要
Portfolio sorting is ubiquitous in the empirical finance literature, where it has been widely used to identify pricing anomalies. Despite its popularity, little attention has been paid to the statistical properties of the procedure. We develop a general framework for portfolio sorting by casting it as a nonparametric estimator. We present valid asymptotic inference methods and a valid mean square error expansion of the estimator leading to an optimal choice for the number of portfolios. In practical settings, the optimal choice may be much larger than the standard choices of five or ten. To illustrate the relevance of our results, we revisit the size and momentum anomalies.
科研通智能强力驱动
Strongly Powered by AbleSci AI