材料科学
电迁移
凝聚态物理
空位缺陷
化学物理
外延
褐铁矿
扫描透射电子显微镜
钙钛矿(结构)
相变
结晶学
氧化物
过渡金属
透射电子显微镜
纳米技术
复合材料
冶金
催化作用
化学
物理
图层(电子)
生物化学
作者
Liang Zhu,Shulin Chen,Hui Zhang,Jine Zhang,Yuanwei Sun,Xiaomin Li,Zhi Xu,Lifen Wang,Jirong Sun,Peng Gao,Wenlong Wang,Xuedong Bai
标识
DOI:10.1021/acsami.9b08406
摘要
The oxygen vacancy profile in LaCoO3 exhibits rich phases with distinct structures, symmetries, and magnetic properties. Exploration of the lattice degree of freedom of LaCoO3 in the transition between these different structural phases may provide a route to enable new functionality in oxide materials with potential applications. To date, the oxygen vacancy profile transition in LaCoO3 has mainly been induced by transition-metal doping or thermal treatment. Epitaxial strain was proposed to compete with the lattice degree of freedom but has not yet been rationalized. Here, the experimental findings of strain-inhibited structural transition from perovskite to brownmillerite during the electromigration of oxygen vacancies in epitaxial LaCoO3 thin films are demonstrated. The results indicate that the oxygen vacancy ordering phase induced by the electric field is suppressed locally by both epitaxial strain field and external loads shown by in situ aberration-corrected (scanning)/ transmission electron microscopy. The demonstrated complex interplay between the electric and strain fields in the structural transitions of LaCoO3 opens up prospects for manipulating new physical properties by external excitations and/or strain engineering of a substrate.
科研通智能强力驱动
Strongly Powered by AbleSci AI