A New Method for Non-line-of-sight GNSS Signal Detection for Positioning Accuracy Improvement in Urban Environments

计算机科学 全球导航卫星系统应用 非视线传播 人工智能 伪距 计算机视觉 信号(编程语言) 实时计算 数据挖掘 全球定位系统 电信 程序设计语言 无线
作者
Zhitao Lyu,Yang Gao
出处
期刊:Proceedings of the Satellite Division's International Technical Meeting 卷期号:: 2972-2988 被引量:16
标识
DOI:10.33012/2020.17662
摘要

The classification of the line-of-sight (LOS) and non-line-of-sight (NLOS) signals is one of the major problems for robust GNSS positioning and the shadow matching in urban environments. The existing techniques include the multi-sensor integration, 3D map aid, using a dual-polarized antenna, an omnidirectional camera aid are proposed to solve the classification problem. However, they all require external hardware or up-to-date map, which is expensive or impractical for mass-market applications. Consistency checking with the receiver autonomous integrity monitoring (RAIM) is widely used for the detection of NLOS signals, but it is efficient only when the majority of the received signals are LOS signals. Machine learning methods, including the decision tree, the support vector machine (SVM) have been explored to classify LOS and NLOS with good accuracy. However, all current machine learning based method only utilize information within one epoch, all the inter-epoch information and data features in time series are lost, and the information of signal propagation in the complex urban environments is not fully manifested in the Rinex level observation and NMEA level observations in one single epoch. In this paper, a multivariate Long Short Term Memory Fully Convolutional Network (MLSTM-FCN) based signal classification method is proposed. With the aid of the convolution layer and long short term memory block, this method handles the data features in both time domain and value domain. Six time series features of GNSS signal, including differenced C/N0, time differenced ambiguity, double difference phase and pseudorange, phase and pseudorange consistency are analyzed and used as the input of the MLSTM-FCN. Datasets from two locations in the urban Calgary are collected, each of which is used for training and testing purposes respectively. The results reveal that, compared to the SVM classification method, the overall testing accuracy of the newly proposed classifier is improved from 93.00% to 95.97% for the Rinex level observation, and from 92.99% to 93.83 for the NMEA level observation. This improved classification accuracy brought by the proposed classifier is encouraging since it will enhance the robustness of the conventional GNSS positioning and the shadow matching based navigation system by reducing unbounded NLOS signal errors in urban environments and result in significant improvement in positioning accuracy. Compared to the SVM classifier aided single point positioning (SPP) test, the accuracy in the form of RMS of the MLSTM-FCN aided SPP test can be improved by 24.3%, 17.8% and 24.4% in the East, North and Up directions respectively, and the rate of the valid solution can be increased from 99.02% to 99.94%. The new method has the potential to be widely applied by various receiver types with the output of the raw observation or only with the NMEA observations output.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Akim应助地三鲜采纳,获得10
2秒前
xiaoliu完成签到,获得积分10
3秒前
斯文败类应助Aurora采纳,获得10
3秒前
5秒前
乌冬面发布了新的文献求助10
7秒前
8秒前
9秒前
13秒前
fragile完成签到,获得积分10
14秒前
namelorna发布了新的文献求助10
15秒前
周钰波完成签到,获得积分20
15秒前
研友_VZG7GZ应助Aurora采纳,获得10
15秒前
lhs发布了新的文献求助10
16秒前
乐乐应助gy采纳,获得10
17秒前
lht完成签到 ,获得积分10
19秒前
21秒前
丘比特应助liuwenjie采纳,获得10
24秒前
传奇3应助lhs采纳,获得10
25秒前
25秒前
25秒前
Aurora完成签到,获得积分10
26秒前
wyby发布了新的文献求助10
26秒前
ygwu0946完成签到,获得积分10
27秒前
27秒前
黄橙子完成签到 ,获得积分10
28秒前
江雯君发布了新的文献求助10
30秒前
wanhe发布了新的文献求助10
30秒前
aaaa完成签到,获得积分10
31秒前
tdtk发布了新的文献求助10
32秒前
wyby完成签到,获得积分20
33秒前
36秒前
zzyh完成签到,获得积分10
38秒前
namelorna完成签到,获得积分10
39秒前
地三鲜发布了新的文献求助10
41秒前
研友_Y59785应助金晓采纳,获得10
42秒前
是三石啊完成签到 ,获得积分10
42秒前
wanhe完成签到,获得积分10
43秒前
xingyi完成签到,获得积分10
43秒前
顾矜应助renpp822采纳,获得30
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779843
求助须知:如何正确求助?哪些是违规求助? 3325264
关于积分的说明 10222351
捐赠科研通 3040435
什么是DOI,文献DOI怎么找? 1668835
邀请新用户注册赠送积分活动 798788
科研通“疑难数据库(出版商)”最低求助积分说明 758563