Lifespan prediction of lithium-ion batteries based on various extracted features and gradient boosting regression tree model

Boosting(机器学习) 梯度升压 电池(电) 回归 非线性系统 树(集合论) 决策树 计算机科学 人工智能 机器学习 统计 数学 随机森林 物理 功率(物理) 数学分析 量子力学
作者
Fangfang Yang,Dong Wang,Fan Xu,Zhelin Huang,Kwok‐Leung Tsui
出处
期刊:Journal of Power Sources [Elsevier]
卷期号:476: 228654-228654 被引量:192
标识
DOI:10.1016/j.jpowsour.2020.228654
摘要

Accurate battery lifespan prediction is critical for the quality evaluation and long-term planning of battery management systems. As battery degradation process is typically nonlinear, accurate early prediction of cycle life with significantly less degradation is extremely challenging. Approaches using machine learning techniques, which are mechanism-agnostic alternatives, to predict battery lifespan are therefore becoming more and more attractive. In this paper, a gradient boosting regression tree (GBRT) is proposed to model complex nonlinear battery dynamics and predict battery lifespan through various extracted battery features. Essentially, the GBRT works by constructing additional trees through minimizing the prediction residues from existing base models. It can identify complex and nonlinear end-to-end relationship and meanwhile provide relative importance for each input feature. Various potential features including voltage-related features, capacity-related features, and temperature-related features are constructed in both discharge time dimension and life cycle dimension and explored for effective lifespan prediction. Key hyper-parameters including learning rate, number of trees, and maximum number of splits are investigated for optimal GBRT prediction. Comparative studies confirm that the proposed method is significantly superior to other machine learning algorithms for battery lifespan prediction with limited data samples and various input features, with mean average percentage error around 7%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wjp发布了新的文献求助10
刚刚
刚刚
斯文的老虎完成签到,获得积分10
2秒前
123关闭了123文献求助
3秒前
可爱的函函应助gzmejiji采纳,获得10
3秒前
CR7应助高贵代曼采纳,获得20
3秒前
量子星尘发布了新的文献求助10
4秒前
zxh发布了新的文献求助10
4秒前
6秒前
6秒前
7秒前
华仔应助dududu采纳,获得10
8秒前
Orange应助大半个菜鸟采纳,获得10
8秒前
乐乐应助不安的凡桃采纳,获得10
9秒前
杏林靴子完成签到,获得积分10
9秒前
浮浮世世发布了新的文献求助10
10秒前
12秒前
炙热静白完成签到,获得积分20
13秒前
13秒前
无花果应助现代的雪糕采纳,获得30
14秒前
14秒前
传奇3应助Blanca采纳,获得10
14秒前
云蓝完成签到 ,获得积分10
15秒前
16秒前
16秒前
luxiuzhen完成签到,获得积分10
16秒前
16秒前
17秒前
QQYYHH完成签到,获得积分10
18秒前
Zzk完成签到,获得积分10
19秒前
冷傲老头发布了新的文献求助10
19秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
科研通AI2S应助1816013153采纳,获得10
20秒前
秀丽的咖啡完成签到,获得积分10
21秒前
凡华发布了新的文献求助10
22秒前
23秒前
zzz发布了新的文献求助10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5481597
求助须知:如何正确求助?哪些是违规求助? 4582625
关于积分的说明 14385853
捐赠科研通 4511310
什么是DOI,文献DOI怎么找? 2472314
邀请新用户注册赠送积分活动 1458592
关于科研通互助平台的介绍 1432094