A Multivariate and Multistage Medium- and Long-Term Streamflow Prediction Based on an Ensemble of Signal Decomposition Techniques with a Deep Learning Network

水流 希尔伯特-黄变换 计算机科学 系列(地层学) 阶段(地层学) 人工神经网络 一致性(知识库) 多元统计 分解 算法 数据挖掘 人工智能 数学 机器学习 统计 地理 白噪声 流域 古生物学 生物 地图学 生态学
作者
Muhammad Sibtain,Xianshan Li,Snoober Saleem
出处
期刊:Advances in Meteorology [Hindawi Publishing Corporation]
卷期号:2020: 1-20 被引量:21
标识
DOI:10.1155/2020/8828664
摘要

The accuracy and consistency of streamflow prediction play a significant role in several applications involving the management of hydrological resources, such as power generation, water supply, and flood mitigation. However, the nonlinear dynamics of the climatic factors jeopardize the development of efficient prediction models. Therefore, to enhance the reliability and accuracy of streamflow prediction, this paper developed a three-stage hybrid model, namely, IVL (ICEEMDAN-VMD-LSTM), which integrated improved complete ensemble empirical mode decomposition with additive noise (ICEEMDAN), variational mode decomposition (VMD), and long short-term memory (LSTM) neural network. Monthly data series of streamflow, temperature, and precipitation in the Swat River Watershed, Pakistan, from January 1971 to December 2015 was used as a case study. Firstly, the correlation analysis and the two-stage decomposition approach were employed to select suitable inputs for the proposed model. ICEEMDAN was employed as a first decomposition stage, to decompose the three data series into intrinsic mode functions (IMFs) and a residual component. In the second decomposition stage, the component of high frequency (IMF1) was decomposed by VMD, as the second decomposition. Afterward, all the components obtained through the correction analysis and the two-stage decomposition approach were predicted by using the LSTM network. Finally, the predicted results of all components were aggregated, to formulate an ensemble prediction for the original monthly streamflow series. The predicted results showed that the performance of the proposed model was superior to the other developed models, in respect of several evaluation benchmarks, demonstrating the applicability of the proposed IVL model for monthly streamflow prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liyang完成签到,获得积分10
1秒前
ky完成签到,获得积分10
1秒前
Zhang1867完成签到,获得积分10
2秒前
liyang发布了新的文献求助10
4秒前
4秒前
4秒前
逸风望发布了新的文献求助10
4秒前
敬老院N号应助guozizi采纳,获得30
4秒前
量子星尘发布了新的文献求助10
9秒前
Xi发布了新的文献求助10
9秒前
10秒前
14秒前
呼斯冷完成签到,获得积分20
15秒前
赶紧毕业发布了新的文献求助10
15秒前
17秒前
18秒前
ddl7完成签到,获得积分10
19秒前
书霂完成签到,获得积分10
20秒前
20秒前
呼斯冷发布了新的文献求助10
20秒前
21秒前
22秒前
呆萌的谷波完成签到,获得积分10
23秒前
苹果语山完成签到,获得积分10
23秒前
24秒前
24秒前
xiiin完成签到 ,获得积分10
25秒前
zzz发布了新的文献求助10
25秒前
伍小颖酱发布了新的文献求助10
26秒前
koii完成签到,获得积分10
27秒前
28秒前
shining发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
29秒前
29秒前
31秒前
32秒前
赶紧毕业完成签到,获得积分10
33秒前
闹闹加油发布了新的文献求助10
33秒前
SciGPT应助Kathy采纳,获得10
33秒前
34秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Semiconductor devices : pioneering papers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3862200
求助须知:如何正确求助?哪些是违规求助? 3404743
关于积分的说明 10641081
捐赠科研通 3127932
什么是DOI,文献DOI怎么找? 1724965
邀请新用户注册赠送积分活动 830759
科研通“疑难数据库(出版商)”最低求助积分说明 779421