已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Artificial intelligence and machine learning for Alzheimer’s disease: let’s not forget about the retina

视网膜 医学 疾病 人工智能 阿尔茨海默病 神经科学 眼科 验光服务 认知科学 病理 计算机科学 心理学
作者
Wei Yan Ng,Carol Y. Cheung,Dan Miléa,Daniel Shu Wei Ting
出处
期刊:British Journal of Ophthalmology [BMJ]
卷期号:105 (5): 593-594 被引量:10
标识
DOI:10.1136/bjophthalmol-2020-318407
摘要

As the world population ages, it is estimated that the population worldwide above the age of 65 years old will increase from 420 million in 2000 to almost 1 billion by 2030.1 Dementia, with Alzheimer’s disease (AD) as the leading cause, is expected to rise in tandem. AD accounts for 60%–80% of all dementia cases,2 with an estimated 5–7 million new cases diagnosed each year.3 Despite intensive research, the diagnosis of AD is currently made through a combination of clinical assessment, neuroimaging and detection of biomarkers from positron emission tomography or cerebrospinal fluid examination,4 with patients facing issues including high costs, invasiveness of the procedures.5 Hence, alternative identification of AD without the use of costly or invasive tests remains a challenge that is difficult to surmount. To date, the healthcare has experienced a significant shift towards early accurate detection as well as early prevention. This importance is highlighted by the screening and surveillance of prevalent diseases such as diabetic retinopathy,6 breast cancer7 and dementia.8 While some of these programmes have been very successful in significantly reducing morbidity and mortality, significant amount of manpower, time and training is required for their successful execution.9 10 This has lent greater weight to the adoption of healthcare technology in order to optimise the accuracy and efficiency of such programmes. Artificial intelligence (AI), through the combination of digitised big data and computational power, has emerged at the forefront of healthcare.11 It appears to be well-suited to address the needs of the healthcare system: fast and accurate predictive, diagnostic and possibly therapeutic algorithms. Machine …
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ANG完成签到 ,获得积分10
刚刚
4秒前
酒渡完成签到,获得积分10
4秒前
sandra发布了新的文献求助10
5秒前
nbing完成签到,获得积分10
9秒前
Esther应助dawn采纳,获得10
14秒前
18秒前
BW完成签到,获得积分10
19秒前
周冯雪完成签到 ,获得积分10
20秒前
CHERIE发布了新的文献求助10
23秒前
科研通AI2S应助T1aNer299采纳,获得10
23秒前
小二郎应助sandra采纳,获得10
24秒前
LXF关闭了LXF文献求助
28秒前
yuan发布了新的文献求助10
29秒前
29秒前
29秒前
CHERIE完成签到,获得积分10
31秒前
33秒前
在水一方应助耳东陈采纳,获得10
36秒前
善学以致用应助英勇羿采纳,获得10
37秒前
居居发布了新的文献求助10
39秒前
39秒前
风一样的风干肠完成签到 ,获得积分10
41秒前
T1aNer299发布了新的文献求助10
46秒前
47秒前
48秒前
哈基米德应助科研通管家采纳,获得20
49秒前
50秒前
哈基米德应助科研通管家采纳,获得20
50秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
浮游应助科研通管家采纳,获得10
50秒前
斯文败类应助科研通管家采纳,获得10
50秒前
Jasper应助科研通管家采纳,获得10
50秒前
哈基米德应助科研通管家采纳,获得20
50秒前
Lucas应助科研通管家采纳,获得10
50秒前
50秒前
52秒前
耍酷的鹰完成签到,获得积分10
52秒前
共享精神应助LLL采纳,获得10
53秒前
耳东陈发布了新的文献求助10
53秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345529
求助须知:如何正确求助?哪些是违规求助? 4480441
关于积分的说明 13946306
捐赠科研通 4377975
什么是DOI,文献DOI怎么找? 2405510
邀请新用户注册赠送积分活动 1398115
关于科研通互助平台的介绍 1370519