Integrating Expert Knowledge With Domain Adaptation for Unsupervised Fault Diagnosis

断层(地质) 计算机科学 人工智能 数据挖掘 合成数据 领域知识 机器学习 领域(数学分析) 适应(眼睛) 模式识别(心理学) 数学 光学 物理 地质学 数学分析 地震学
作者
Qin Wang,Cees Taal,Olga Fink
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:82
标识
DOI:10.1109/tim.2021.3127654
摘要

Data-driven fault diagnosis methods often require abundant labeled examples\nfor each fault type. On the contrary, real-world data is often unlabeled and\nconsists of mostly healthy observations and only few samples of faulty\nconditions. The lack of labels and fault samples imposes a significant\nchallenge for existing data-driven fault diagnosis methods. In this paper, we\naim to overcome this limitation by integrating expert knowledge with domain\nadaptation in a synthetic-to-real framework for unsupervised fault diagnosis.\nMotivated by the fact that domain experts often have a relatively good\nunderstanding on how different fault types affect healthy signals, in the first\nstep of the proposed framework, a synthetic fault dataset is generated by\naugmenting real vibration samples of healthy bearings. This synthetic dataset\nintegrates expert knowledge and encodes class information about the fault\ntypes. However, models trained solely based on the synthetic data often do not\nperform well because of the distinct distribution difference between the\nsynthetically generated and real faults. To overcome this domain gap between\nthe synthetic and real data, in the second step of the proposed framework, an\nimbalance-robust domain adaptation~(DA) approach is proposed to adapt the model\nfrom synthetic faults~(source) to the unlabeled real faults~(target) which\nsuffer from severe class imbalance. The framework is evaluated on two\nunsupervised fault diagnosis cases for bearings, the CWRU laboratory dataset\nand a real-world wind-turbine dataset. Experimental results demonstrate that\nthe generated faults are effective for encoding fault type information and the\ndomain adaptation is robust against the different levels of class imbalance\nbetween faults.\n
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的粉丝团团长应助111采纳,获得10
刚刚
独狼完成签到 ,获得积分10
刚刚
芸沐发布了新的文献求助10
刚刚
科研通AI6应助科研通管家采纳,获得30
2秒前
欣慰元蝶应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得30
3秒前
欣慰元蝶应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
实验室应助科研通管家采纳,获得30
3秒前
英姑应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
6秒前
6秒前
孟孟完成签到 ,获得积分10
7秒前
8秒前
8秒前
芸沐完成签到,获得积分20
9秒前
10秒前
Joshua发布了新的文献求助10
12秒前
和谐的棉花糖完成签到,获得积分10
13秒前
照小刀发布了新的文献求助10
13秒前
可爱的函函应助冷静苗条采纳,获得10
13秒前
小李发布了新的文献求助10
15秒前
不安网络发布了新的文献求助10
16秒前
莫问归期应助予秋采纳,获得10
17秒前
科研通AI2S应助予秋采纳,获得10
17秒前
17秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
呆萌青枫发布了新的文献求助30
21秒前
淡淡金针菇完成签到 ,获得积分10
23秒前
聆风完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5556163
求助须知:如何正确求助?哪些是违规求助? 4640783
关于积分的说明 14662947
捐赠科研通 4582797
什么是DOI,文献DOI怎么找? 2513629
邀请新用户注册赠送积分活动 1488235
关于科研通互助平台的介绍 1459006