Development and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in colorectal cancer from routine histology images: a retrospective study

微卫星不稳定性 结直肠癌 克拉斯 卷积神经网络 接收机工作特性 计算机科学 人工智能 癌症 深度学习 机器学习 医学 肿瘤科 生物 计算生物学 遗传学 内科学 微卫星 基因 等位基因
作者
Mohsin Bilal,Shan E Ahmed Raza,Ayesha Azam,Simon Graham,Mohammad Ilyas,Ian A. Cree,David Snead,Fayyaz Minhas,Nasir Rajpoot
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:3 (12): e763-e772 被引量:214
标识
DOI:10.1016/s2589-7500(21)00180-1
摘要

BackgroundDetermining the status of molecular pathways and key mutations in colorectal cancer is crucial for optimal therapeutic decision making. We therefore aimed to develop a novel deep learning pipeline to predict the status of key molecular pathways and mutations from whole-slide images of haematoxylin and eosin-stained colorectal cancer slides as an alternative to current tests.MethodsIn this retrospective study, we used 502 diagnostic slides of primary colorectal tumours from 499 patients in The Cancer Genome Atlas colon and rectal cancer (TCGA-CRC-DX) cohort and developed a weakly supervised deep learning framework involving three separate convolutional neural network models. Whole-slide images were divided into equally sized tiles and model 1 (ResNet18) extracted tumour tiles from non-tumour tiles. These tumour tiles were inputted into model 2 (adapted ResNet34), trained by iterative draw and rank sampling to calculate a prediction score for each tile that represented the likelihood of a tile belonging to the molecular labels of high mutation density (vs low mutation density), microsatellite instability (vs microsatellite stability), chromosomal instability (vs genomic stability), CpG island methylator phenotype (CIMP)-high (vs CIMP-low), BRAFmut (vs BRAFWT), TP53mut (vs TP53WT), and KRASWT (vs KRASmut). These scores were used to identify the top-ranked titles from each slide, and model 3 (HoVer-Net) segmented and classified the different types of cell nuclei in these tiles. We calculated the area under the convex hull of the receiver operating characteristic curve (AUROC) as a model performance measure and compared our results with those of previously published methods.FindingsOur iterative draw and rank sampling method yielded mean AUROCs for the prediction of hypermutation (0·81 [SD 0·03] vs 0·71), microsatellite instability (0·86 [0·04] vs 0·74), chromosomal instability (0·83 [0·02] vs 0·73), BRAFmut (0·79 [0·01] vs 0·66), and TP53mut (0·73 [0·02] vs 0·64) in the TCGA-CRC-DX cohort that were higher than those from previously published methods, and an AUROC for KRASmut that was similar to previously reported methods (0·60 [SD 0·04] vs 0·60). Mean AUROC for predicting CIMP-high status was 0·79 (SD 0·05). We found high proportions of tumour-infiltrating lymphocytes and necrotic tumour cells to be associated with microsatellite instability, and high proportions of tumour-infiltrating lymphocytes and a low proportion of necrotic tumour cells to be associated with hypermutation.InterpretationAfter large-scale validation, our proposed algorithm for predicting clinically important mutations and molecular pathways, such as microsatellite instability, in colorectal cancer could be used to stratify patients for targeted therapies with potentially lower costs and quicker turnaround times than sequencing-based or immunohistochemistry-based approaches.FundingThe UK Medical Research Council.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李123完成签到,获得积分20
2秒前
2秒前
4秒前
Scarlett完成签到,获得积分10
6秒前
善学以致用应助QING采纳,获得10
7秒前
脑洞疼应助吃吃货采纳,获得10
7秒前
xr发布了新的文献求助10
8秒前
9秒前
10秒前
11秒前
诚心断天完成签到,获得积分10
12秒前
13秒前
13秒前
hyl发布了新的文献求助10
14秒前
CipherSage应助梦nv孩采纳,获得10
14秒前
吨吨喝水发布了新的文献求助10
14秒前
maomao完成签到,获得积分10
16秒前
麻花精发布了新的文献求助20
16秒前
16秒前
16秒前
sfwrbh给sfwrbh的求助进行了留言
16秒前
领导范儿应助追光采纳,获得10
16秒前
Owen应助xr采纳,获得10
19秒前
Gudeguy完成签到 ,获得积分10
19秒前
诗亭发布了新的文献求助10
19秒前
Sean完成签到 ,获得积分10
19秒前
coolkid应助麻花精采纳,获得10
20秒前
21秒前
吃吃货发布了新的文献求助10
21秒前
pluto应助有梦想的咸鱼采纳,获得20
25秒前
25秒前
无情山水发布了新的文献求助30
27秒前
arisfield完成签到,获得积分10
27秒前
27秒前
10完成签到,获得积分10
29秒前
qianlan发布了新的文献求助10
30秒前
耍酷的梦桃完成签到,获得积分10
30秒前
SciGPT应助我我我我采纳,获得10
31秒前
BallQ发布了新的文献求助10
31秒前
33秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845908
求助须知:如何正确求助?哪些是违规求助? 3388256
关于积分的说明 10552408
捐赠科研通 3108892
什么是DOI,文献DOI怎么找? 1713201
邀请新用户注册赠送积分活动 824607
科研通“疑难数据库(出版商)”最低求助积分说明 774932